
AD-RI94 499 LEVEL I ADA/SQL (STRUCTURED QUERY LANGUAGE) DATABASE L/2
LANGUAGE INTERFACE U.. (U) INSTITUTE FOR DEFENSE
ANALYSES ALEXANDRIA VA I *RYKCZYNSKI ET AL. SEP 9?

UNCLASSIFIED IDA-N-26l IDA/HQ-S7-32693 HDA903-04-C-0031 F/G 12/59 M

ALI li& 811112.IIIII~~ 1326 I2.

MICROCOPY RESOLUTION TEST CHAR1 E .[.

N % lei'i

- .-- __

336 -

• ''.'t, ." a' ,F "€ a.'" "' a ,', e' 4 ,e,¢ ' . • # d #' ' ie,(",e ' , ." ", .-L' .

UNCLASSIFIED COPY 12 of 55 copies
00

0 IDA MEMORANDUM REPORT M-360 :'i''

wt 9" FILE COI 1

LEVEL 1 Ada/SQL DATABASE
LANGUAGE INTERFACE USER'S GUIDE

DTICBill Brykzynski
E LECTE Fred Friedman

3 JUN 2 8 IMlU Kerry Hilliard

S Audrey Hook •
D

September 1987

DISTRIBUTION STATEMENT A________

Approved for public emeu •

a Distributifo Unlimid
Prepared for

Office of the Under Secretary of Defense for Research and Engineering

IST -TTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311

UNCLASSIFIED IDA Log No. HO 87-32693

DEFINM~ONS
IDA IMMiaa So IehlAwle d Irn s MW Inp Se sll. of It uwk

Rept areSo mad edslled mod sewll 815 hde1 pradest IDA pobhla.

aPMle mejar pWA*ee as *W Ob a il! wiesen. ghfi un.atue basi

In"l. Ia Cere adI I MI pellie w (c) add*e lame Si hm 1'11 al -ia esasals
Ivmsase. IDA Ropeft we ot lowd by AUi peake of mput -a eaer S- l s N
Romallyad el msUlmepmdeewdfdla, adftam r mieleae by IS Prided of IDA

papers
Papm may adien s~dvaly rditdtelua wpolelmes. Theysm~li
a.mutldspeft asl-. ited. reput spheae i tek d be s elk la
mark Papem We r Aiee In ura Si aOw mad duefdilh to Se spedeit
relasa paper In pdienae jamal.

Memoamudm Reports
m1A Mmeedanm fsputs w med Oas a. osemlas d4 A epes as a. a iy s
ie1asdaateevwuk dee In qe"e ade aledlesad uejwrIde llvete IIIII I~u

adivillm ta male aleb pielHmau ad edile eta dysa or da
peepW ad pee 1-vlle Wa Newr lelerut l Sik selly. ye and ueav
dal; eris make a ieadP- seea Ns mlgs. as bIes as of data develepd In
a. omas of a lavel as. Revow of Mmaseed..w Repasts Is smdt is sealedm
ad Imsneedd m.

The ofel.i IDA work are eM seevey by beeq ad owll mOaasad te eploa
Od 1~s ddAde by a. spama, 0bsa ap pea

Thm wuepue In s aedme aeadete sede mel MOA In3 0 C OI31 fasr
a. nepeda of Defame. The peMhldla of Oe IDA desamed don ad les Wown-
mad by a. Depabdi. dele d m Abea a. seetai be ses, a as reflestil a.t
d41.4. pwelle .d agesy JIThM Mslaueeda. Repu Is polilaba In asdat mak wAM al. mi e wa N sedba

las a. m ad amelees d I Irea putla. The materl k ad eseseastly bas

I ~ ~Apprevedla pabl Nease dlilatlellulte.

-del

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Public release/unlmited distribution.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Memorandum Report M-360

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses IDA OUSDA, DIMO

6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311

Sa NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Defense Logistics Agency DLA-ZWS MDA 903 84 C 0031

Sc ADDRESS (City, State, and Zip Code) 10 SOURCE OF FUNDING NUMBERS

Cameron Station PROGRAM PROJECT TASK WORK UNIT -

Alexandria, VA 22304-6100 ELEMENT NO NO. NO. ACCESSION NO.
T-TS-2

11 TITLE (Include Security Classification)

Level 1 Ada/SQL Database Language Interface User's Guide (U)
12 PERSONAL AUTHOR(S)

Bill Brykczynski, Fred Friedman, Kerry Hilliard, Audrey A. Hook
13. TYPE OF REPORT 13b TIME COVERED f4 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final FROM TO 1987 September 108

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse It necessary and identify by block number)FIEL GOROUPEISUBSSBGERTERM
FIELD GROUP SUB-GROUP Ada programming language; structured query language (SQL); binding

specifications; relational database systems; software engineering; database
tables; interface specifications; administrative processing systems.

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of this IDA Memorandun Report is to present a binding specification between the programming language
Ada and the database language SQLA This document will be used to provide a capability for accessing a relational

database from the Ada language and will provide a cross reference between the Ada/SQL language and the SQL
language. As a user's guide, M-360 addresses the functionality of the ANSI SQL standard and identifies a subset
implementation of it as Level 1. A Level 1 implementation was delivered to the DLA for use with a database package
that is intended for regional administrative systems. An Ada application prototype will be implemented to demonstrate

software engineering using Ada in the environment provided for these regional adminstrative systems. In addition, an
IDA Memorandum Report M-361 has been published as a companion document which provides the source listings for

the demonstration software that implements this Level 1 version of Ada/SQL. ..

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

M UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. [] DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include area code) 22c OFFICE SYMBOL

Audrey A. Hook (703) 824-5501 IDA/CSED

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

AU other editions are obsolete UNCLASSIFIED

UNCLASSIFIED

IDA MEMORANDUM REPORT M-360

LEVEL 1 Ada/SQL DATABASE
LANGUAGE INTERFACE USER'S GUIDE

Bill Brykczynski
Fred Friedman
Kerry Hilliard
Audrey Hook 0

Accesonrr,

NTIS CRAMI 0
DTIC TAB C3

September 1987 u£, r,,ced-

By

[D
iar I

'i ;t€, w~

* 0

I DA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
0

Task T-T5-423 (

UNCLASSIFIED
d.

Table of Contents
1. Scope .. 1
2. References .. 3
3. O verview ... 5

3.L Organization ... S
3.2. Notation ... 5
3.3 Conventions .. 5

4. Concepts ... 7
4.1. Sets ... 7
4.2. Data Types ... 7

4.2.1. Character Strings .. 7
4,2.2. Numbers ... 7
4.2.3. Enumeration Types .. 8

4.3. Columns ... 8
4.4 Tables ... 8
4.5. Integrity Constraints .. 9
4.6. Schemas ... 10
4.7. The Database ... 10
4.& Program Environment ... 10
4.9. Procedures ... 10
4.10. Parameters .. 10

4.10.1. SQLCODE .. 10
4.10.1.1. Exceptions ... 10

4.10.2. Indicator Variables ... 10
4.11. Standard Programming Languages ... 11
4.12. Cursors ... 11
4.13. Statements .. 11
4.14. Embedded Syntax .. 12
4.15. Privileges ... 12
4.16. Transactions .. 12
4.17. Philosophy .. 13
4.18. Level I vs Future Levels ... 14

5. Common Elements ... 17
5.1. <character> .. 17
5.2. <literal> ... 18
5.3. <token> ... 20
5.4. Names ... 22

5.4.1. <identifier> ... 25
5.5. <data type> .. 26

5.5.1. <string type definition> ... 27
5.5.2. <integer type definition> .. 28
5.53. <real type definition> .. 29
5.5.4. <enumeration type definition> ... 30 .'
5.5.5. <derived type definition> ... 31
5.5.6. <constraint> .. 32
5.5.7. <range constraint> ... 33
5.5.8. <floating point constraint> .. 34
5.5.9. <index constraint> ... 35
S.5.10. <subtype indication> .. 36

5.6. <value specification> .. 37
5.7. <column specification> ... 38
5.8. <set function specification> ... 39
5.9. <value expression> .. 41

DRAFT ii

5.10. <predicate> 43
5.11. <comparison pr e d i c a t e>................................ 44

S.11.1. <type conversion> 46
5.12. <between predicate> ... 47
5.13. <in predicate> 48
5.14. <like pr e d i c a te.................................... 49
5.15S. <null predicate> 5.......... 1
5.16. <quantified predicate>..5S2
5.17. <exists predicate> ... 5S3
5.18 <search condition> .. 5S4
5.19. <table expression> .. 5S6
5.20. <from clause>..5S7
5.21. <where clause> ... 5S9
5.22. <group by clause> ... 60
S.23. <having clause>... 61
5.24. <siibquery>.. 62
5.25. <query specification>... 64

6. Schema Definition Language.. 67
6.1. <schema> .. 67

6.1.1. <authorization package compilation unit>..................................... 68
6.1.2. <schema package compilation unit>.. 69
6.1.3. <context clause> .. 71
6.1.4. <type declaration>... 72
6.1.5. <subtype declaration>.. 73

6.2. <table definition> .. 74
6.3. <column definition> .. 75
6.4. <~uique constraint definition>.. 76
6.5. <view definition>.. 76
6.6. <privilege definition>... 76

7. Program Environment.. 77
7.1. <program environment>... 77
7.2. <Ada/SQL variable package compilation unit>....................................... 78

8. Data Manipulation Language .. 79
8.. <close statement> .. 79
8.2. <commit statement> .. 80
8.3. <declare cursor>... 81
8.4. <delete statement: positioned> .. 84
8.5. <delete statement: searched>.. 8S
8.. <fetch statement> .. 86
8.7. <insert statement>.. 88
8.8& <open statement> .. 9
8.9. <rollback statement> ... 91
8.0. <select statement> ... 92
8.1. <update statement: positioned> ... 94
8.2. <update statement: searched> .. 96

DRAFT7

Preface

The purpose of IDA Memorandum Report M-360, Level 1 Ada/SQL Database Language Interface, is to forward
data developed in the course of an investigation. This Memorandum presents a binding specification between the
programming language Ada and the database language SQL. In particular, this specification is in the exact format
which is found in the SQL specification (i.e. chapter names are identical)

The importance of this document is based on fulfilling the objective of Task Order T-T5-423, Defense Logistics A
Agency Information Systems, which is to provide a capability for accessing a relational database from the Ada
language. M-360 will be used to provide a cross reference between the Ada/SQL language and the SQL language. As
a Memorandum Report, M-360 is directed to those users of Ada/SQL within the Defense Logistics Agency.

b

0j

DRA~r

1. Scope

This report has been prepared in partial fulfillment of IDA task T-T5-423, "Defense Logistics Agency Information
Systems." This User's Guide for the Ada/SQL Database Language Interface addresses the functionality of the ANSI
SQL standard but identifies a sub-set implementation of it as Level 1. A Level 1 implementation was delivered to S
DLA for use with a database package that is intended for regional administrative systems. An Ada application
prototype will be implemented to demonstrate software engineering using Ada in the environment provided for these
regional administrative systems.

IDA Memorandum 361 is a companion document that provides the source listings for the demonstration software that
implements this Level I version of Ada/SQL.

This User's Guide specifies the syntax and semantics of Level 1 Ada/SQL. The Ada/SQL DDL is used for declaring
the structures and integrity constraints of database tables that will be used with Ada/SQL DML to manipulate the
database tables from within an Ada program.

bS

DRAFT

P '

I

S

S

-j

9

sq.

'a

4-

-V.

9

5'

C..

'p

2 DRAFT

Q
z
I~.s
u~i

- ~ ~' .4\vrU ~ C- sq C C - *' %* ~ * ... ~ ~ ~

2. References :
ft.

1) American National Standaid "Database Language SQL", ISO/DIS 9075 ANSI X3.135-1986, dated May"
• 1986

2) Militay Standard Ada Programming Language. ANSI/MIL.STD- 1815SA, dazed January 1983

*I

,'ft

p.

* A.

DRAFT 3 '

I

ad

a

a

a

I

A.

I

a

a
5

S.

a-

U-

S.

a

4 DRAFT
I~.

-I

U- a" ~ ~
-- ~. a&~Ja. .AI..~

3. Overview

3.1. Organization £

I) Clause 3.2 "Notation" defines the syntactic notation used in the manual.

2) Clause 3.3 "Conventions" define the terms used to specify the syntactic elements in this manual.

3) Clause 4 "Concepts" defines terms and presents concepts used in the definition of Ada/SQL, explains
why limitations were placed on certain Ada concepts and discusses possible future enhancements.

4) Clause 5 "Common Elements" defines language elements that occur in several parts of Ada/SQL.

5) Clause 6 "Schema Definition Language" defines in detail the design of the DDL used for specifying
database tables.

6) Clause 7 "Program Environment" defines the program environment required for an Ada/SQL program.

7) Clause 8 "Data Manipulation Language" defines the statements uses in Ada/SQL to manipulate data -
within the databases.

3.2. Notation

The syntactic notation used in this document is a blend of the simple variants of BNF ("Backus Normal Form" or
"Backus-Naur Form") used in the ANSI Standard SQL Document and the Ada Programming Language Military
Standard. The extensions noted below augment BNF. The syntax is as follows:

Square brackets ([]) indicate optional elements. "

Ellipses (...) indicate elements that may be repeated one or more times.

Braces (I1) group sequences of elements.

Boldface words are used to denote reserved words.

A vertical bar separates alternative items unless it occurs immediately after an opening brace, in which case it stands S
for itself.

If the name of any syntactic category starts with an underlined prefix, it is equivalent to the category name without the
prefix. The prefix is intended to convey some semantic information.

In the BNF syntax, a production symbol <A> is defined to "contain" a production symbol if occurs
someplace in the expansion of <A>. If <A> contains , then is "contained in" <A>. If <A> contains , S
then <A> is the "containing" <A> production symbol for .

3.3. Conventions

Syntactic elements of this manual are specified in terms of:
,'

1) Function: A short statement of the purpose of the element.
2) Format: A BNF definition of the syntax of the element.

3) Syntax Rules: Additional syntactic constraints not expressed in BNF that the element shall satisfy.
4) Level I Implementation Rules: Syntactic constraints specific to Level I Ada/SQL that the element shall

DRAFT 5
* $

satisfy.

5) General Rules: A sequential specification of the rm-time effect of the element.

In the Syntax Rules, the term "shall" defines conditions that are required to be true of syntactically conformingAda/SQL language. "

In the Level I Implementation Rules, the term "shall" defines conditions that are required to be true in AdalSQL Level
1, but are expected to change in future levels.

In the General Rules, the term "shall" defines conditions that are tested at nm-time during the execution of Ada/SQL
statements. If all such conditions are true, then the statement executes successfully. If any such condition is false,
then the statement does not execute successfully and the statement execution has no effect on the database, the
SQLCODE parameter is set and an exception may be raised. Note: Level I Ada/SQL will not set SQLCODE, but will
raise erceptions.

The elements described in this manual for Ada/SQL are standard Ada elements. Not all features of an Ada element
may be permitted in conjunction with Ada/SQL statements. Limitation of an element in Ada/SQL only limits its usewhen used in direct association with the Ada/SQL portions of a compilation unit. a

I,

F

6 DRAFT

Lp -6Ie . l 0Z 6NW 1 -N1

4. Concepts

48 4.1. Sets

A set is an unordered collection of distinct objects.
A muti-set is an unordered colction of objects that are not necessarily distinct. J
A sequence is an ordered collection of objects that are not necessarily distinct.

The cardinality of a collection is the number of objects in that collection. Unless specified otherwise, any collection
may be empty.

4.2. Data Types S

A data type is a set of representable values. The logical representation of a value is a <literal>. The physical
representation of a value is implementor-defined. The implementor-defined representation of values will have no
affect on programs and/or the use of the Ada/SQL system, providing programs use only those logical operations on
data that are representation-independent. Hence, Ada/SQL programs may be fully transportable.

A value is primitive, in that it has no logical subdivision within this specification. A value is a null value or a nonnull
value.

A null value is an implementor-defined type-dependent special value that is distinct from all nonnull values of that

A non-null value may be of any data type defined for Ada/SQL: character string (one dimensional array of
characters), integer, floating point number, and enumeration, the value of any program object, of a permit 'd type, S
may be stored within a database column.

4.2.1. Character Strings

A character string consists of a sequence of characters of the predefined type CHARACTER defined in the Ada
STANDARD package. A character string has a length, which is a positive integer that specifies the number of
characters in the sequence.

Character strings may be defined as STRINGs or as any single-dimension array of CHARACI'ER with integer index.
Character strings are the only Ada/SQL data types defined as Ada arrays. wi

Character strings are comparable in <Ada/SQL statement>s only if they are of the same Ada type. A character string
is identical to another character string if and only if it is equal to that character string in accordance with the
comparison rules specified in 5.11, "<comparison predicate>". ,

A character string value shall only be assigned to a data item or program variable of the same type.
A

4.2.2. Numbers

A number is either an exact numeric value (Ada integer types) or an approximate numeric value (Ada floating point
types). Ada fxed point types are not supported in Level 1.

An exact numeric value is a whole number, either positive, negative or zero. An exact numeric value can be
constrained to fall within a range.

DRAFT 7
N

An approximate numeric value consists of a mantissa and an exponent. The mantissa is a signed numeric value, and
the exponent is a signed integer that specifies the magnitude of the mantissa. An approximate numeric value has a
precision. The precision is a positive integer that specifies the number of significant decimal digits in the mantissa.
An approximate numeric value can be constrained to fall within a range.

Numbers are comparable in <Ada/SQL statement>s only if they are of the same Ada type. A number is identical to
another number if and only if it is equal to that number in accordance with the comparison rules specified in 5.11,"<comparison predicate>".

A number value shall only be assigned to a data item or program variable of the same type.

4.2.3. Enumeration Types

Enumeration types as defined by Ada syntax are permitted. Enumeration types are characterized by a sequence of
values which define ordered sets in which possible values are explicitly listed. The predefined enumeration types
CHARACTER and BOOLEAN will be recognized. CHARACTER is an enumeration type with values of the 128
characters of the ASCII code. BOOLEAN is an enumeration type with values of TRUE and FALSE. The Ada/SQL
operations available on enumeration types are the same as are available on strings, except that LIKE is not available
for enumeration types. The representation clause for enumeration types is not permitted in Level).

Enumeration types will be represented in the database such that their Ada sort order is preserved.

Enumeration values are comparable in <Ada/SQL statement>s only if they are of the same Ada type. An enumeration
value is identical to another enumeration value if and only if it is equal to that enumeration value in accordance with
the comparison rules specified in 5.11, "<comparison predicate>".

An enumeration value shall only be assigned to a data item or program variable of the same type.

4.3. Columns

A column is a multi-set of values that may vary over time. All values of the same column are of the same data type
and are values in the same table. A value of a column is the smallest unit of data that can be selected from a table and
the smallest unit of data that can be updated.

A column has a description and an ordinal position within a table. The description of a column includes its data type S
(which includes range constraints) and indication of whether the column is constrained to contain only nonnull or
nonnull/unique values. The description of a character string column includes its length. The description of a floating
point numeric column includes the number of digits of precision and upper and lower numeric bounds. The
description of an integer numeric column includes upper and lower numeric bounds. The description of an
enumeration column includes the enumeration literls and their order.

A named column is a column of a named table or a column that inherits the description of a named column. The
description of a named column includes its name.

4.4. Tables

A table is a multi-set of rows. A row is a nonempty sequence of values. Every row of the same table has the same
cardinality and contains a value of every column of that table. The nth value in every row of a table is a value of the
nth column of that table. The row is the smallest unit of data that can be inserted into a table and deleted from a table.

The degree of a table is the number of columns of that table. At any time, the degree of a table is the same as the
cardinality of each of its rows and the cardinality of a table is the same as the cardinality of each of its columns.

A table has a description. The description includes a description of each of its columns.

8 DRAFT

...

A base table is a named table defined by a <table definition>. The description of a base table includes its name.

A derived table is a table derived directly or indirectly from one or more other tables by the evaluation of a <query
specification>. The values of a derived table are those of the underlying tables when it is derived.

A viewed table is a named derived table. In Level I Ada/SQL, a viewed table is defined with a <table definition>, just 0
as is a base table. The actual view definition must also be defined to the underlying database using the DBMS DDL.
The description of a viewed table includes its name. Future levels of Ada/SQL will include the capability to specify
<view definition>s.

A table is either updatable or read-only. The operations of insert, update, and delete are permitted for updatable tables
and are not permitted for read only tables.

A grouped table is a set of groups derived during the evaluation of a <group by clause>. A group is a multi-set of
rows in which all values of the grouping column(s) are equal. A grouped table may be considered as a collection of
tables. Set functions may operate on the individual tables within the grouped table.

A grouped view is a viewed table derived from a grouped table.

4.5. Integrity Constraints

Integrity constraints define the valid states of the database by constraining the values in the base tables. Constraints
may be defined to prevent two rows in a table from having the same values in a specified column or columns
(_NOT_NULL_UNIQUE) or to prevent a column from containing a null value (_NOT.NTLL). For Level I
Ada/SQL multiple column unique constraints must be defined in the underlying DBMS DDL only. There is no way to
define multiple column uniqueness in Level 1 AdalSQL.

The integrity constraints _NOT_NULL and _NOT_NULL_UNIQUE are effectively checked after execution of each
<Ada/SQL statement>. If the base table associated with a _NOT_NULL or _NOT_NULLUNIQUE integrity
constraint does not satisfy that integrity constraint, then the <Ada/SQL statement> has no effect, and the appropriate S
error indication is returned.

The integrity constraints _NOT_NULL and _NOTNULL_UNIQUE must be placed on columns of a base table
(through the DDL of the underlying DBMS) for the constraint to be adhered to. These constraints shall also be placed
on the appropriate columns when tables are defined in the Ada/SQL DDL. However only the constraints placed
through the underlying DBMS will be checked after the execution of statements.

Numeric and enumeration values which may be contained in a column may be given range constraints, indicating the
low value and high value permitted in that column in the database.

Range constraints are placed on columns of database tables through table definitions in the Ada/SQL DDL. The
underlying DBMS may or may not allow such constraints to be placed on columns via its DDL.

When using a .rogram value, to directly set the value of a column in a database table, range constraints are effectively
checked after execution of each <Ada/SQL statement>. If the program value does not satisfy the range constraint the
<Ada/SQL statement> has no effect on the table. Range constraints will not be checked in Level I AdaISQL.

Range constraits will not be checked if the value set in the constrained column is not strictly a program value, i.e. if
it is generated within the database, unless the underlying DBMS has the ability to restrict columns in such a way.

Range constraints will be checked for all columns when they are retrieved from the database. If the retrieved value
does not satisfy the column's range constraint an exception will be noted. Range constraints will not be checked in
Level I Ada/SQL.

DRAFT 9
I AA ,

pI

4.6. Schemas

A <schema> is a persistent object specified by the Ada/SQL schema definition language (Ada/SQL DDL). It consists
of all <table definition>s known to the system for a specified <authorization identifier> in an environment. The
"environment" for an Ada/SQL system includes all <schema>s that may be accessed through it.

The tables defined by a <schema> are considered to be "owned by" the <authorization identifier> specified for that
<schema>. In Level I AdalSQL, tables and views must be created, dropped or altered and privileges defined outside
of the AdalSQL environment using the DDL appropriate for the underlying DBMS; several parts of the required DDL
are not defined for Level 1 Ada/SQL and no automated tool is supplied to translate AdalSQL DDL to the DDL of the
underlying DBMS.

4.7. The Database

The database is the collection of all data defined by the <schema>s in an environment.

4.8. Program Environment

An Ada/SQL program environment is an Ada application program, possibly consisting of multiple subprograms, using
Ada/SQL DDL to define one or more databases and Ada/SQL DML to manipulate data in the defined databases. An
Ada/SQL program environment consists of zero or more cursors specified by <declare cursor>s, and one or more calls I
to Ada/SQL DML statements. The program environment for an Ada/SQL system includes all <schema>s that may be
accessed through it.

4.9. Procedures

Procedures, as defined by SQL, are not used in Ada/SQL.

4.10. Parameters

Parameters, as defined by SQL, are not used in Ada/SQL. 0

4.10.1. SQLCODE

The SQLCODE is a special program variable of type integer. Its value is set to a status code that either indicates that
a call to the DML completed successfilly or that an exception condition occurred during execution of the DML
statement. Note: Level I Ada/SQL will not set SQLCODE but will raise exceptions.

4.10.1.1. Exceptions
Status in Ada/SQL is returned by raising the appropriate exception on error. The following exceptions are defined
and discussed throughout this manual: UNIQUEERROR, NULL-ERROR, NOT_FOUNDERROR.

4.10.2. Indicator Variables

An indicator variable is a program variable, constant or literal of type INDICATORVARIABLE, which is an
enumeration type with values of NULL_VALUE and NOT-NULL, that is specified after another parameter in a call •
to a DML procedure. Its primary use is to indicate whether the value that the preceding parameter assumes or

10 DRAFT

supplies is a null value.

4.11. Standard Programming Languages

Ada is the only programming language that the Ada/SQL system is designed to work with. 0

ky

4.12. Cursors

A cursor is specified by a <declare cursor>.

For each <declare cursor> in a program environment, a cursor is effectively created by the execution of a <declare
cursor> and destroyed when the program defining it terminates.

A cursor is in either the open state or the closed state. The initial state of a cursor is the closed state. A cursor is
placed in the open state by an <open statement> and returned to the closed state by a <close statement>, a <commit
statement>, or a <rollback statement>.

A cursor in the open state designates a table, an ordering of the rows of that table, and a position relative to that
ordering. If the <declare cursor> does not specify an <order by clause>, then the rows of the table have an order
defined by the underlying DBMS. This order is subject to the reproducibility requirement within a transaction, but it
may change between transactions. Any program relying on an order defined by the underlying DBMS is erroneous.

1;7
The position of a cursor in the open state is either before a certain row, on a certain row, or after the last row. If a
cursor is on a row, then that row is the current row of the cursor. A cursor may be before the first row or after the last
row even though the table is empty.

A <fetch statement> advances the position of an open cursor to the next row of the cursors ordering and retrieves the
values of the columns of that row. An <update statement: positioned> updates the current row of the cursor. A
<delete statement: positioned> deletes the current row of the cursor.

If a cursor is before a row and a new row is inserted at that position, then the effect, if any on the position of the cursor
is defined by the underlying DBMS. Any program relying on that position is erroneous.

If a cursor is on a row or before a row and that row is deleted, than the cursor is positioned before the row that is
immediately after the position of the deleted row. If such a row does not exist, then the position of the cursor is after

the last row. A

If an error occurs during the execution of an <Ada/SQL statement> that identifies an open cursor, then the effect, if
any, on the position or state of that cursor is defined by the underlying DBMS. Any program relying on the position
or state of that cursor is erroneous.

0
The table designated by an open cursor is either a temporary base table or a temporary viewed table. The
determination of whether a given cursor designates a temporary base table or a temporary viewed table is defined by
the underlying DBMS. Any program relying on this is erroneous.

Each row of a temporary viewed table is derived only when the cursor is positioned on that row.

A temporary base table is created when the cursor is opened and destroyed when the cursor is closed.

4.13. Statements

An <Ada SQL statement> specifies a database operation or a cursor operation. A <select statement> fetches values
from a table. An <insert statement> inserts rows into a table. A <update statement: searched> or <update statement:

Ile

DRAFT I I

V V %

positioned> updates the values in rows of a table. A <delete statement: searched> or <delete statement: positioned>
deletes rows of a table.

4.14. Embedded Syntax -I

An <embedded Ada/SQL host program> uses exact Ada syntax that may be compiled by any standard, validated Ada
compiler. The embedded SQL syntax conforms to Ada syntax.

4.15. Privileges

A privilege authorizes certain actions (insert, delete, select, and update) to be performed on a specified table by a
specified <authorization identifier>. Privileges are not defined by the Level I Ada/SQL DDL. The creation of tables
and the setting of privileges is done outside of the Ada/SQL environment by the DBA using the DDL as required by
the underlying DBMS.

An <authorization identifier> is specified for each <schema>.

The <authorization identifier> specified for a <schema> shall be different from the <authorization identifier> of any
other <schema> in the same environment. The <authorization identifier> of a <schema> is the "owner" of all tables
and views defined in that <schema>.

Tables and views are designated by <table name>s. A <able name> consists of an <authorization identifier> and an
<identifier>. The <authorization identifier> identifies the <schema> in which the table or view designated by the
<table name> was defined. Tables and views defined in different <schema>s can have the same <identifier>. A
<schema> has a single <authorization identifier>. It may, however, be defined within one or more <schema package
declaration>s. Each schema package declaration is an Ada package.

If a reference to a <table name> does not explicitly contain an <authorization identifier>, then the appropriate
<authorization identifier> of the containing <schema> is specified by default providing that reference was made
within a <schema>. If the reference was not made within a <schema>, the applicable <schema package declaration>
and corresponding <authorization identifier> are selected according to Ada visibility rules for table names without an
explicitly stated authorization identifier or package name prefix.

The <authorization identifier> of a <schema> has all privileges on the tables and views defined in that <schema>.

A <schema> with a given <authorization identifier> may contain <privilege defnition>s that grant privileges to other
<authorization identifier>s. The granted privileges may apply to tables and views defined in the current <schema>, or
they may be privileges that were granted to the given <authorization identifier> by other <schema>s. The WITH
GRANT OPTION clause of a <privilege definition> specifies whether the recipient of a privilege may grant it to
others. <privilege definition>s are not implemented in Level 1 of Ada/SQL. All <privilege definition>s must be set
through the underlying DBMS.

4.16. Transactions

A transaction is a sequence of operations, including database operations, that is atomic with respect to recovery and
concurrency. Transactions terminate with a <commit statement> or a <rollback statement>. If a transaction
terminates with a <commit statement>, then all changes made to the database by that transaction are made accessible
to all concurrent transactions. If a transaction terminates with a <rollback statement>, then all changes made to the
database by that transaction are canceled. Committed changes cannot be canceled. Changes made to the database by
a transaction can be perceived by that transaction, but cannot be perceived by other transactions until that transaction
terminates with a <commit statement>.

The execution of concurrent transactions is guaranteed to be serializable. A serializable execution is defined to be an

12 DRAFT

,-.

execution of the operations of concurrently executing transactions that produces the same effect as some serial
execution of those same transactions. A serial execution is one in which each transaction executes to completion
before the next transaction begins.

The execution of an <Ada/SQL statement> within a transaction has no effect on the database other than the effect
stated in the General Rules for that <Ada/SQL statement>. Together with serializable execution, this implies that all
read operations are reproducible within a transaction, except for changes explicitly made by the transaction itself.

Valid execution of any Ada/SQL data manipulation statement other than <declare cursor> initiates a transaction for
the executing program, if one is not already in progress. A transaction in progress upon program termination is
automatically terminated as if a <rollback statement> had been issued.

4.17. Philosophy

The limitations and constraints placed on the Ada statements described in this manual reflect the limitations of Level 1
Ada/SQL. For Level I of Ada/SQL we have elected to keep the DDL as similar to SQL's as possible without losing
the advantage of Ada's strong typing and enumeration types. With this simplification of Ada/SQL to SQL format, we
have lost some of the advanced features of Ada. These features will be implemented in a later Level of Ada/SQL.
These restrictions of Level I affect only the part of an Ada program immediately concerned with Ada/SQL, the DDL
and <Ada/SQL statement>s.

Level I Ada/SQL will not contain a DDL generator to generate DDL for the underlying Database Management
System (DBMS)). The DBMS DDL must be created separately by the DBA. The DBMS DDL will contain table 0
creation, setting unique columns, view creation, and privileges. Level 1 Ada/SQL DDL will be used only to describe
table formats and column data types to the Ada/SQL system. A table must be defined to the database before the
Ada/SQL System can access it. The classification package of the schema, as defined by the proposed Ada/SQL
MIL-STD (but not required by the ANSI standard) which defines the security classification of all columns in each
table defined in the schema packages, will not be implemented in Level 1. All security will be through privileges
defined by the DBMS DDL.

Level 1 Ada/SQL DDL will be used only to describe table formats, column data types, range restrictions, and not null
and unique limitations. Therefore the DDL package ADA_-SQL will contain only type definitions. It may contain no
function specifications, call no subprograms and declare no objects. Neither the ADA.._SQL package nor its enclosing
package is to have a body, since view definitions, privilege definitions and multiple column uniqueness constraints are
not processed in Level I Ada/SQL DDL; these constructs will be placed in package bodies in later levels of Ada/SQL.

As mentioned earlier for Level 1 Ada/SQL we have elected to keep the DDL and DML as similar to SQL's as
possible without losing the advantage of Ada's strong typing and enumeration types. Therefore we have eliminated
some of the more advanced features of the type definitions for this level.

Following is a list of Ada features not allowed in the Level I Ada/SQL DDL.

1) Nested packages are not permitted except for the special case of the nested package ADASQL required
in all DDL units.

2) Private sections are not permitted.

3) Package bodies are not permitted.

4) Ada attributes are not permitted.

5) Renaming declarations, generic declarations, generic instantiations, deferred constant declarations,
subprogram declarations, task declarations, exception declarations, object declarations, and number
declarations are not permitted.

6) Variables, constants and named numbers are not permitted.

7) All ranges, index constraints etc. are to be defined with literals, not with variables, constants or complex
expressions.

DRAFT 13

8) AD expressions are to be simple literals, no math may be performed, no functions such as ABS or NOT
may be referenced, no relational operators such as = > < may be used and no variables or constants may

be used.

9) Based literals are not permitted, all numeric literals must be decimal.
10) No default values may be assigned to any types.

II) Access types, private types, task types, incomplete type declarations and representation clauses may not
be used.

12) Array types must be made up of CHARACTER components and be of one dimension only with integer

index.

13) Records may not contain discriminants, variant parts or unconstrained arrays: records must be defined as
being of fixed length. Record components may not be of record types.

14) Fixed point numbers may not be used. Floating point and integer may be used.

15) Type conversions may not be used.

4.18. Level I vs Future Levels

FUTURE LEVELS OF Ada/SQL

DDL creates BS
• - &.framework

generates operate

added Ada/SQL use the Ada/SQL
features DOL definitions Programs

This illustration shows the interaction of the different parts of Ada/SQL in Level 1. The DBMS DDL is used to define

and create the framework of the database. The Ada/SQL DDL mirrors parts of the DBMS DDL, such as the format of

tables. The definitions in the Ada/SQL DDL are used by the Ada/SQL programs to operate on the database. The

features eliminated in Level I of Ada/SQL DDL are those not required by the Ada/SQL programs to operate on the

database.

14 DRAFT

LEVEL ONE Ada/SQL

prsoperateS

misigDDL definitions Programs

not required

Th1is illustration shows the interaction of the different pans of Ada/SQL in future levels. The AdaSQL DDL is usedto generate the DBMS DDL which is then used to define and create the framnework of the database. The definitions inthe Ada/SQL DDL are used by the Ada/SQL programs to operate on the database. The features added to future levelsof Ada/SQL allow the DBMS DDL to be generated directly from the Ada/SQL DDL.

DRA~r 1

* - ~ -~ -~ -- ~-~-

I

e

I

I

S

L

S

9

I

I

16 DRAFT
-9

~

5. Common Elements

5.1. <character>

Function

Define the terminal symbols of the language and the elements of strings.

Format

<character>
<igit> I <letter> I <special character> I <space character>

<digit>
0123456789 -

<letter>::I<owrcslee>
<upper case letter> I4wrcs etr

<upper case letter>
ABCDEFGHIJKLMNOPQRSTUVWXYZ

<lower cane letter>:=
* abcdefghijklmnopqrstuvwxyz

<special character>::=

<space character>:.=
space

<format effector>
horizontal tabulation. vertcal tabulation, carriage return,
line feed, form feed

Syntax Rules

1) The only characters allowed in Ada/SQL are the <character>s defined here, including the format
effectors.

General Rulesy

None.

DRAFT 17

NAI V4, 4 -P

5.2. <literal>

Function

Specify a nonnull value.

Format

<literal>::=
<enumeration literal>

I <character string literal>
I <numeric literal>

<enumeration literal>::=
<identifier>

I <character literal>

<character literal>
'<character>'

<character string literal>:
"<character representation>..."

<character representation> ::=
<nonquote character>

I <quote representation>

<nonquote character>
See Syntax Rule 4.

<quote representation>

<numeric literal>::=
<decimal literal>

<decimal literal>::=
<integer> [.<integer>] [<exponent>]

<integer> ::=
<digit> [I [<underscore>] <digit>I...J

<underscore>:: _

<exponent> ::=
E (+1 <integer>

I E - <integer>

Syntax Riles

1) An <enumeration literal> yields a value that belongs to an enumeration type.

2) A <character literal> is formed by enclosing one of the 95 <character>s (including the <space
character>) between two apostrophe <character>s ('). A <character literal> has a value that belongs to a
character type. The predefined type CHARACTER is an enumeration type with the values of the 128
characters of the ASCII code.

3) A <character suing literal> is formed by a sequence of <character>s (possibly none) enclosed between
two quotation characters used as string brackets.

18 DRAFT

- t

4) A <noquote character> is any <character> other than the double quote mark character (").

5) A <character string literal> yields a value that belongs to a character string type (a one-dimensional
array of CHARACTER with integer index). The length of a <character string literal> is the number of
<character representation>s that it contains. Each <quote representation> in a <character string literal>
represents a single quotation mark character in both the value and the length of the <character string %

literal>.

6) There are two classes of <numeric literal>s: real literals and integer literals. A real literal is a <numeric
literal> that includes a point (.); an integer literal is a <numeric literal> without a point. Real literals are
the literals of the type universal-real. Integer literals are the literals of the type universal integer. An
exponent for an integer literal must not have a minus sign. Numeric literals may be automatically

* converted to any other similar (integer vs. real) numeric type.

7) An <underscore> character inserted between adjacent <digit>s of a <decimal literal> does not affect the
value of this <numeric literal>. The letter E of the exponent, if any, can be written either in lower case
or in upper case, with the same meaning.

8) A <numeric literal> may be a <based literal> in Ada. In Level I Ada/SQL <based literal>s are not
* permitted. All numeric literals are assumed to be decimal.

General Rules

1) The evaluation of a <literal> yields the corresponding value.

2) <enumeration literal>s include <character literal>s and yield values of the corresponding enumeration
* types.

3) A <character string literal> is a basic operation that combines the sequence of characters it contains into
a value of a character string type; the lower bound of this array is given by S'FIRST where S is the
index subtype; the upper bound is determined by the length.

4) For a <character string literal> containing no <character representation>s, the upper bound is the
predecessor, as given by the PRED attribute, of the lower bound. The evaluation of a such a <character

• string literal> returns an error if the lower bound does not have a predecessor.

5) For the evaluation of a <character string literal> containing one or more <character representation>s. a
check is made that the index range defined belongs to the index subtype. The exception
CONSTRAINT_ERROR is raised if any of these checks fails.

6) The type of a <character string literal> must be determinable solely from the context in which this literal
* appears, excluding the literal itself, but using the fact that a <character string literal> is a value of a one

dimensional array type whose component type is a character type.

7) The character literals corresponding to the <character representations> used within a <character string %
literal> must be visible at the place of the <character string literal> (although these characters
themselves are not used to determine the type of the <character string literal>). -,

8) The numeric value of a <decimal literal> is derived from the normal mathematical interpretation of
positional decimal notation (that is, the base is implicitly ten). An <exponent> indicates the power of U

ten by which the value of the <decimal literal> without the exponent is to be multiplied to obtain the
value of the <decimal literal> with the <exponent>.

%.

DRAFT 19

5.3. <token>

Function

Specify lexical units.

Format

<token>:
<noodelimiter token> I <delimiter token>

<nondelimiter token>
<identifier>

I <SQL key word>
I <Ada key word>
I <Ada/SQL key word>
I <literal>

<SQL key word>::=
ALL I AND I ANY I AS I ASC I AUTHORIZATION I AVG I BEGIN I BETWEEN

IBY I CHAR I CHARACTER I CHECK I CLOSE I COBOL I COMMIT I CONTINUE
I COUNT I CREATE I CURRENT I CURSOR I DEC I DECIMAL I DECLARE I DELETE
I DESC I DISTINCT I DOUBLE I END I ESCAPE I EXEC I EXISTS I FETCH
I FLOAT I FOR I FORTRAN I FOUND I FROM I GO I GOTO I GRANT I GROUP
I HAVING I IN I INDICATOR I INSERT I INT I INTEGER I INTO I IS
I LANGUAGE I LIKE I MIX I MIN I MODULE I NOT I NULL I NUMERIC I OF
I ON I OPEN I OPTION I OR I ORDER I PASCAL I PLI I PRECISION I PRIVILEGES
I PROCEDURE I PUBLIC I REAL I ROLLBACK I SCHEMA I SECTION I SELECT I SET
ISMALLINT I SOME I SQL I SQLCODE I SQLERROR I SUM I TABLE I TO I UNION
I UNIQUE I UPDATE I USER I VALUES I VIEW I WHENEVER I WHERE I WITH I WORK

<Ada key word> ::=
ABORT I ABS I ACCEPT I ACCESS I ALL I AND I ARRAY I AT I BEGIN I BODY

I CASE I CONSTANT I DECLARE I DELAY I DELTA I DIGITS I DO I ELSE I ELSIF
IEND I ENTRY I EXCEPTION I EXIT I FOR I FUNCTION I GENERIC I GOTO I IF
IN I IS I LIMITED I LOOP I MOD I NEW I NOT I NULL I OF I OR I OTHERS

I OUT I PACKAGE I PRAGMA I PRIVATE I PROCEDURE I RAISE I RANGE I RECORD
I REM I RENAMES I RETURN I REVERSE I SELECT I SEPARATE I SUBTYPE I TASK
1 TERMINATE I THEN I TYPE I USE I WHEN I WHILE I WITH I XOR'

<Ada/SQL key word> ::=
ACS I ALLL I AND I ANY I AVG I AVG-ALL I AVG_DISTINCT I BETWEEN

I CLOSE I COMMITWORK I COUNT I COUNTDISTINCT I CURSORFOR I DECLARCLOSE

I DELETEFROM I DESC I EQ I ESCAPE I EXISTS I FETCH I FROM I GROUP_BY
I HAVING I INDICATOR I INSERTINTO I INTO I IS_IN I IS_NOT_NULL I ISNULL
I LIKE I MAX I MAXALL I MAXDISTINCT I NUN I MIN ALL I MIN_DISTINCT
I NE I NOT I NOT_IN I NULLVALUE I OPEN I OR I ORDERBY I ROLLBACKWORK
I SELEC I SELECTALL I SELECTDISTINCT I SET I SOME I SUM I SUMALL
I SUM_DISTINCT I UNION I UNIONALL I UPDATE I USER I VALUES I WHERE
I WHERE_CURRENT_OF

<delimiter token>::=
& l '1 +) l l l- . / l< -- >l {I =>

I .1"*1:=1/=>=<=1<<1>>1<>

<separator> ::=
<space character> -

I <format effector>
2%

20 DRAFT

'p

I end of a line

<Comment>::
--[<character>. ..I<newline>

<newline> 0
implementor defined end of line indicator

Syntax Rules
1) A <oken>, other than a <character string literal> or a <character literal>, shall not include a <space

* character>.

2) Any <token> may be followed by a <separator>. A <nondelimiter token> shall be followed by a
<delimniter token> or a <separator>. If the syntax does not allow a <nondelimiter token> to be followed
by a <delimiter token>, then that <nondelimiter token> shall be followed by a <separator>.

General Rules

Noe 0

0

* .0

I %

DRA~r 2

5.4. Names

Function "

Specify names.

Format

<name>:
<simple name>

1 <character literal>

<simple name>::=
<identifier>

<column name>
<identifier>

<table name>::=
<selected component table name>

I <underscored table name>
I <hyphenated table name>

<package name> ::=
<unit simple name> D

I <unit simple name> [. <unit simple name>]

<unit simple name>
<identifier>

<selected component table name>
[<authorization identifier>.] <table identifier>

<underscored table name> :
[<authorization identifier>] <table identifier>

<hyphenated table name>
[<authorization identifier> -] <table identifier>

<authorization identifier>
<identifier>

<table identifier>::=
<identifier>

<type identifier>
<identifier>

<correlation name declaration>
package <correlation name> is
new <table name> CORRELATION.NAME [("<identifier>") 1;

<correlation name> ::=
identifier>

<subtype identifier>::=
<identifier> [NOTNULL [_UNIQUE]]

22 DRAFT

I

Syntax Rules

1) A <table name> identifies a named table. In most contexts where an <authorization identifier> is used
within a <table name>, the <authorization identifier> is separated from the <table identifier> by a
period. There are, however, isolated occurrences where the separator character is an underscore, (see
the "<forn clause>"), or a hyphen (see the "<view definition>" and the "<insert statement>". <view
definition> will be defined in a later AdalSQL Level.

2) If a <table name> does not contain an <authorization identifier>, then:

a) If a <table name> is contained in a <schema>, then the <authorization identifier> specified as the
<schema authorization identifier> of the <schema> is implicit

b) If the <table name> is contained outside a <schema>, then the <authorization identifier> as
chosen by the Ada visibility rules is implicit.

3) Two <table name>s are equal if and only if they have the same <table identifier> and the same
<authorization identifier>, regardless of whether the <authorization identifier>s are implicit or explicit.

4) A <table name> is declared by the <table definition> directly containing it.

5) A <table name> in an <Ada/SQL statement> shall identify a table defined in one of the <schema>s of
the containing programs.

6) Case:

a) If a <table name> is directly contained in a <correlation name declaration>, then it shall be
written as an <underscored table name>. I

b) If a <table name> is directly contained in a <view definition> containing a <view column list> or
an <insert statement> containing an <insert column list>, then it shall be written as a -

<hyphenated table name>. <view definition> will be defined in a later AdalSQL Level. %

c) Otherwise, a <table name> shall be written as a <selected component table name>.

7) A <package name> identifies a named Ada package, which may be qualified to identify a nested
package.

8) A <unit simple name> identifier an unqualified named Ada package.

9) An <authorization identifier> represents an authorization identifier.

10) The <identifier> of a <type identifier> shall have been defined previously with a type or subtype
declaration.

11) An <identifier> is declared as a <correlation name> for a particular table by a <correlation name
declaration> directly containing that <correlation name> and the <table name> that identifies the table.
The same <correlation name> may be reused within different scopes of the same statement, although it
must refer to different instances of the same table.

12) If the <correlation name declaration> contains the optional <identifier>, then that <identifier> shall
match the <correlation name> declared.

13) The use of a <correlation name> in a <from clause> associates a scope with that use of the <correlation
name>. The scope is either a <select statement>, <subquery>, or <query specification>. Scopes may be
nested. The same <correlation name> may be associated with several different scopes, but may not be
associated with the same scope more than once.

14) The <correlation name declaration> for a <correlation name> used in a <from clause> shall be directly
visible, by Ada visibility rules, at the point in the source text at which the <from clause> appears.

15) A <column name> identifies a named column. An <identifier> is defined as a <column> by a <table
definition>.

16) Names, other than authorization identifiers, table identifiers and column names defined in the DDL, may
be any valid Ada identifiers, except that they may not be the same as <SQL key words>, <Ada key
words> or <Ada/SQL key words>. Names of authorization identifiers, table identifiers and column

DRAFT 23

2 !

names are limited to 18 characters.

17) <subtype identifier>s may include the suffixes _NOT._NULL or _NOT_NULL_ UNIQUE. Database
columns defined by record components of subtypes namned with these suffixes shall have the
corresponding SQL constraints.

Level 1 Implementadkrn Rides

1) <authorization identifiers> are not used by UNIFY. UNIFY limits <table identifler>s to 8 characters

and <column name>s to 16 characters.

General Rules

NOW.

24 DRAFr

% % o

%

5.4.1. <identifier>

Function

Identifiers are used as names and reserved words.

Format

<identifier> ::;
<letter> [underscore>] <letter or digit> ..I

<underscore> ::

<letter or digit>
<letter>

I <digit>

Syntax Rules

1) Ideudfiers perform their usual Ada functions within schemas, but are also used to name SQL
authorization identifiers, tables, and columns.

2) An <identifier> may consist of as many characters as permitted by Ada, except <identifier>s relating
directly to the database, such as authorization identifiers, table names, column names, etc, which may
consist of no more than 18 <character>s.

3) A user-defined <identifier> shall not be identical to an <SQL key word>, an <Ada key word>, or an
<Ada/SQL key word> as defined in Clause 5.3 "<token>".

4) Identifiers used as subtype names may include the suffixes _NOT_NULL or _NOT_NULL_UNIQUE.
Database columns defined by record components of subtypes named with these suffixes shall have the
corresponding SQL constraints.

5) Case is not significant in an <identifier>.

General Rules

None.

N-'
D T

DRAFT 25

5.5. <data type>

Function

Specify a data type.

Format

<data type>:
<string type definition>

I <integer type definition>
I <real type definitton>
I <enumeration type definition>

Syntax Rules

1) A database column of a subtype having a null range must not be declared as _NOTNULL or
_NOTNULL_UNIQUE - only null values may be stored within it. (The usefulness of such a column
would be extremely limited.)

2) Ada/SQL supports the predefined type CHARACTER which is an enumeration type with the values of
the 128 characters of the ASCII code.

3) Ada/SQL supports the predefined type BOOLEAN which is an enumeration type with the values of
FALSE and TRUE.

4) Ada/SQL supports the predefined integer type of INTEGER, as well at the NATURAL (zero and greater
than zero) and POSITIVE (greater than zero) subtypes. Other implementor optional predefined types
defined in the STANDARD package, such as SHORT_INTEGER and LONG_INTEGER, are also
supported, as appropriate for each implementation.

5) Ada/SQL supports the predefined real type FLOAT. Other implementor optional predefined types
defined in the STANDARD package, such as SHORT_FLOAT and LONG_FLOAT, are also supported,
as appropriate for each implementation.

6) Ada/SQL supports the predefined type STRING. The values of the predefined type STRING are
one-dimensional arrays of the predefined type CHARACTER, indexed by values of the predefined
subtype POSITIVE.

7) There may be other predefined types in the package STANDARD and/or other system dependent
packages. All of these predefined types may be used in Ada/SQL, provided they are within a class
described above.

General Rules

None.

.26

I .

26 DRAFT

5.5.1. <string type definition>

Funtim

* Define a string data type.

Format

<suing type definition>.
<unconstrained array definition>

1 <constrained array definition>

<unconstrained array definition>::
array (<index subtype definition>)

of <coMpnent subtype indication>

<constrained array definition>::
* array <index constraint> of <compnent subtype indication>P

<index subtype definition>::
<type mark> range <>

Syntax Rules

* 1) For <string type definition> all arrays shall have a single integer index with components of
CHARACTER type.

2) For <constrained array definition>, arrays shall have a single integer index with components of
CHARACTER type; the <index consa-aint> shall have positive bounds; and the <comoet utp
indication> shall be of CHARACTER type and have no associated <constrait>. Lnn utp

* 3) For <unconstrained array definition>, the <type mark> of the <idex subtype definition> shall be of an
integer type. The <coMpnent subtype indication> shall be of CHARACTER type and have no
associated <constraint>.

General Rules

None.

4~ ra

5.5.2. <integer type definition>

Function

Define an integer data type. "

Format

<integer type definition>::=
<range constraint>

Syntax Rules

1) Each bound of the <range> of the <range constraint> shall be of an integer type.

General Rules

1) Integer values are positive or negative integers or zero. Integer types may have range constraints which
identify a lower and upper limit of valid numbers associated with the type. The range of integers
supported by a database management system may not be the same as that supported by the Ada system
used to access that DBMS. The package DATABASE provides information about the DBMS being
accessed by Ada/SQL. In particular, the smallest (most negative) integer value supported by the DBMS
through Ada/SQL is the named number DATABASE.MIN_INT and the largest (most positive) value is
DATABASE.MAX_INT. The type DATABASE.INTG is defined to encompass the maximum range of
integers supported by the DBMS through Ada/SQL.

2) The DATABASE package also includes the definition of a type SMALLINT, with range corresponding
to that supported by the DBMS type SMALLINT through Ada/SQL. Ada/SQL will convert Ada integer
data types to the corresponding DBMS types as follows: (1) If the Ada type or subtype declaration
explicitly references (following a chain of references) INTEGER or DATABASE.INTG, then the SQL
INTEGER type is used, (2) if the declaration of the Ada type or subtype explicitly references
SMALLINT, then the SQL SMALLINT type is used, (3) if none of these types is referenced in the Ada
declarations, then the SQL SMALLINT type is used if the range of values is compatible with it,
otherwise the SQL INTEGER type is used.

3) If the range of integers supported by the DBMS is smaller than that supported by Ada, then Ada/SQL
will issue warning diagnostics upon encountering explicitly declared ranges that extend beyond the
capability of the DBMS. The execution of an Ada/SQL operation that would require the DBMS to
handle an integer beyond its range will cause an error indication to be returned to the program, unless
the erroneous operation is performed entirely within the DBMS and is not detected by the DBMS. 0

4) SQL does not support subtypes, so database operations may be performed without range checking. (An
implementation may perform range checking where practical, however, returning an error on database
operations that would violate subtype constraints.) If range checking is not performed, it is possible for
an Ada/SQL statement to cause one or more database columns to contain values outside the ranges
defined for those columns. An error will be returned, however, when it is attempted to retrieve such
values. If the value can be legally stored in the variable used to retrieve it, then the value will be stored
before the error is returned.

28 DRAFT

, ... ~

5.5.3. <real type definition>

FunctioI
Define a real data type.

Format

<real type definition>::=
<floating point constraint

Syntax Rules

None.

General Rules

1) Real types represent approximations of numbers, with precision to a specified number of significant
digits, and an optional restriction on their range. The range and accuracy of real numbers supported by a
database management system may not be the same as that supported by the Ada system used to access
that DBMS. If the range or accuracy of real numbers supported by the DBMS is smaller than that
supported by Ada, then Ada/SQL will issue warning diagnostics upon encountering explicitly declared
characteristics that extend beyond the capability of the DBMS. An error is returned by the execution of
an Ada/SQL operation that would require the DBMS to handle a real number beyond its range, unless
the erroneous operation is performed entirely within the DBMS and is not detected by the DBMS. In
general, no error is returned if accuracy is lost as a result of database operations.

2) The underlying DBMS must support the model numbers (according to the Ada definition) for types that
are successfully processed by Ada/SQL as well as safe numbers within the ranges of subtypes. The
DBMS may also support a wider range of safe numbers.

3) The comments on range checking and errors for integers are applicable to real numbers as well.

4) The DATABASE package defines REAL and DOUBLE_PRECISION types, with ranges and accuracies
corresponding to those supported by the SQL REAL and DOUBLE PRECISION types as available from
the underlying DBMS through Ada/SQL. Ada/SQL will convert Ada floating point types to the
corresponding DBMS types as follows: (1) If the Ada type or subtype declaration explicitly references
(following a chain of references) DOUBLE_PRECISION, then the SQL DOUBLE PRECISION type is
used, (2) if the declaration of the Ada type or subtype explicitly references REAL, then the SQL REAL
type is used, (3) if neither DOUBLEPRECISION nor REAL is referenced in the Ada declarations, then
a SQL FLOAT type with appropriate precision is used if the range and accuracy of values is compatible
with it, otherwise the SQL DOUBLEPRECISION type is used. Note that the range and accuracy of the
Ada FLOAT type may not correspond to those achievable with the SQL FLOAT type. H

5) The maximum number of floating point digits that can be handled by Ada/SQL through the underlying
DBMS is given by the system dependent named number DATABASE.MAXDIGITS.

*1

DRAFT 29

4

I0

5.5.4. <enumeration type definition>

Function

Defines an enumeration data type. -

Format

<enumeration type definition>::=
(<enumeration literal specification>
1. <enumeration literal specification>)...)

<enumeration literal specification>
<enumeration literal>

Syntax Rules

1) An <enumeration literal> shall be an <identifier> or <character literal>.

2) The <identifier>s and <character literal>s listed by an <enumeration type definition> must be distinct.

3) Each <enumeration literal> of an enumeration type has a position number which is an integer value.
Each <enumeration literal> yields a different enumeration value. The predefined order relations
between enumeration values follow the order of corresponding position numbers. The position number
of the value of the first listed <enumeration literal> is zero; the position number for each other
<enumeration literal> is one more than for its predecessor in the list.

General Rules

None.

i

30 DRAFr

Xr..i

5.5.5. <derived type definition>

Define a derived data type.

Format

<derived type definition>now -<ubtype inication>
Syntax Rules

I) A derived type definition defines a new (base) type whose characteristics are derived from those of a
parent t ye the new type is called a derived type. A derived type definition further defines a derived
subtype, which is a subtype of the derived type.

2) The <subtype indication> defines the parent subtype. The parent type is the base type of the parent
subtype. If a constraint exists for the parent subtype, a similar constraint exists for the derived subtype;
the only difference is that for a range constraint and likewise for a floating constraint that includes a
range constraint, the value of each bound is replaced by the corresponding value of the derived type.

3) Te derived type belongs to the same class of types as the parent type. The set of possible values for the
derived type is a copy of the set of possible values for the parent type.

4) Explicit type conversion of a value of the parent type into the corresponding value of the derived type is
allowed and vice versa. (In Ada/SQL as in Ada, explicit type conversions may be performed from any
numeric type to any numeric type and from any string type to any string type. For Level I Ada/SQL
then, the additional explicit type conversion capability provided for derived types affects only
enumeration types. Explicit type conversion from one enumeration type to another may be performed if
one of the two types is derived from the other, directly or indirectly, or if there exists a third type from
which both types are derived, directly or indirectly.)

5) For each enumeration literal of the parent type (if applicable), there is a corresponding enumeration
literal for the derived type.

General Rules

None.

'A

z

I,,. 31

DR0

1"

o

•

, .' ,," - . .':'.,. /;. ,',.','.'.-'- ; : ;,' = .2 , .:,. . : .,
DRA.FT,.,

3', 1... v , ,

5.5.6. <constraint>

Define possible constraints for a data type.

Format

<constraint>::=
<range constraint>

I <floating point constraint>
I <index constraint>

Syntax Rules

1) A <range constraint> specifies the bounds of the values a type may contain.

2) A <floating point constraint> specifies the minimum number of significant decimal digits for a real type
and possibly a <range constraint>.

3) An <index constraint> specifies the data type of the index of an array and the bounds of the index.

General Rules

None.

0

LA

32 DRAFT .!

5.5.7. <range constraint>
Function

Define a range constraint for a data type.

Format

<range constraint> :
range <range>

<range> ::=
-<range literal>.. <range literal>

<range literal>
[.+ I - I <numeric literal>

I <enumeration literal>

Syntax Rules

1) A <range> specifies a subset of values of a scalar type. The <range> L..R specifies the values from L to
R inclusive if the relation L <= R is true. The values L and R are called the lower bound and upper
bound of the <range>, respectively. A value V is said to satisfy a <range constraint> if it belongs to the
<ran>; the value V is said to belong to the <range> if the relations L <= V and V <= R are both
TRUE. A null <range> is a <range> for which the relation R < L is TRUE; no value belongs to a null
<range>.

2) If a <range constraint> is used in a <subtype indication>, either directly or as part of a <floating point t1V
constraint>, the type of the <range literal> (converted from a universal type, if necessary) must be the
same as the base type of the <type mark> of the <subtype indication>. A <range constraint> is
compatible with a subtype if each bound of the <range> belongs to the subtype, or if the <range
constraint> defines a null <range>; otherwise the <range constraint> is not compatible with the subtype.
A <range constraint> on a subtype shall be a subset of the <range constraint> of the <subtype
indicator>.

General Rules

None.

.1~'
U .

DRAFT 33

LIS w _

9

5.5.8. <floating point constraint>

Function .
Define a floating point constraint for a real data type.

Format

<floating point constraint>
<floating accuracy definition> [<range constraint>]

<floating accuracy definition>::=
digits <numeric literal>

Syntax Rules

1) For <floating accuracy definition>, the <numeric literal> shall be a positive integer (nonzero).

2) The <numeric literal> specifies the minimum number of significant decimal digits that the
representation of the real type being defined must provide.

3) Each bound of the <range> of the <range constraint> (if used) shall be of a real type.

General Rules

None.

3'I 9f

p.

9 '

34 DRAF

WI.

5.5.9. <index constraint>

Function

Define an index constraint for an array data type.

Format

<index constraint>
(<range>)

I (<subtype indication>)

Syntax Rules

1) The <index constraint> determines the range of possible values for the index of an array type, and
thereby the corresponding array bounds.

2) The <index constraint> specifies the type of the array index, which in Level) Ada/SQL must be an
integer type.

3) The <subtype indication> may only be the <type mark> of an integer type.

General Rules

None.

DRAFT 35

5.5.10. <subtype indication>

Reference another (possibly constrained) type or subtype.

Format

<subtype indication> ::=
<type mark> [<constraint>]

<type mark>::=
[<package name>.] <type identifier>

Syntax Rules

1) The <type mark> must previously have been defined with a <type declaration> or a <subtype
declaration>.

2) Standard Ada visibility rules apply to the use or omission of the <package name> within the <type
mark>.

General Rules

None.

36 DRAFT

: -. .+ :. . .: * ' " "" '' - ""' " " -' ' . " - "'"- '

S---

% • ' ,', %

5.6. <value specification>

Fancim

Indicate program values, indicate whether or not the values are null, implement the keyword USER. S

Format

<value specification>::=
<program value>

I <program value with indicator>

<program value>::=
<Ada program object>

I <literal>
I USER

<program value with indicator>::=
INDICATOR (<program value> [, <indicator variable>])

Syntax Rules

1) A <value specification> specifies a value that is not selected from a table.

* 2) An <indicator variable> is a program variable, constant, or literal of type INDICATORVARIABLE,
which is an enumeration type with values of NULL.VALUE and NOT_NULL.

3) An <Ada program object> is a program variable defined within a <variable package>, of a type
appropriate for the database column being accessed.

4) The data type of USER is USER_ALTHORIZATION_IDENTIFIER, defined in the DATABASE
package.

5) The data type of a <program value with iadicator> is the same as that of the contained <program value>.

Level I Implementation Rules

1) Null values shall not be used with UNIFY.

General Rules

1) If a <value specification> contains an <indicator variable> and the value of the <indicator variable> is
NULLVALUE, then the value specified by the <value specification> is null. Otherwise, the value
specified by a <value specification> is the value of the contained <program value>.

2) The value specified by a <literal> is the value represented by that <literal>.

3) The value specified by USER is indicative of the user executing the program.

DRAFT 37

111 11 1 ,111 11 , 11 111' Ii 117 1 If 11, 111 1 11 11 111

5.7. <column specification>

Function

Reference a named column.

Format

<column specification>::=
[<qualifier>.] <column name>

<qualifier>::=
<table name>

I <correlation name>

Syntax Rules

1) A <column specification> references a named column. The meaning of a reference to a column depends
on the context.

2) Let C be the <column name> of the <column specification>.

3) Case:

a) If a <column specification> contains a <qualifier>, then the <column specification> shall appear
within the scope of one or more <table name>s or <correlation names>s equal to that
<qualifier>. If there is more than one such <table name> or <correlation name>, then the onewith the most local scope is specified. The table associated with the specified <table name> or
<correlation name> shall include a column whose <column name> is C.

b) If a <column specification> does not include a <qualifier>, then it shall be contained within the
scope of one or more <table name>s or <correlation name>s. Of these, let the phrase "possible
qualifiers" denote those <table name>s and <correlation name>s whose associated table includes 0
a column whose <column name> is C. There shall be exactly one possible qualifier with the most
local scope, and that <table name> or <qualifier> is implicitly specified.

Note: the "scope" of a <table name> or <correlation name> is specified in 5.20, "<from clause>", 8.5,
"<delete statement: searched>", and 8.12, "<update statement: searched>"

4) If a <column specification> is contained in a <table expression> T and the scope of the implicitly or
explicitly specified <qualifier> of the <column specification> is some <Ada/SQL statement> or <table
expression> that contains the <table expression> T, then the <column specification> is an "outer
reference" to the table associated with that <qualifier>.

5) Let T denote the table associated with the explicitly or implicitly specified <qualifier> R. The data type
of a <column specification> is the data type of column C of T.

General Rules 0

1) "C" or "R.C" references column C in a given row of T.

3

38 DRAFT

5.8. <set function specification>

Specify a value derived by the application of a function to an argument.

Format

<set function specification> ::=
COUNT('*')

I <distinct set function>
I <all set function>

<distinc set fimction>::

j AVG_DISTINCT
I MAXDISTINCT
I MW-DISTINCT
1 SUMDISTINCT
1 COUNTDISTINCT I (<column specification>)

<all set function> ::-
I AVG

IMIX
IMIN

I SUM
I AVGALL
I MAXALL

MIN_ALL
I SUMALL I (<value expression>)

Syntax Rules

1) The argument of COUNT ('*') and the argument source of a <distinct set function> and <all set
function> is a table or a group of a grouped table as specified in 5.19 "<table expression>", 5.24
"<subquery>" and 5.25 "<query specification>".

2) Let R denote the argument or argument source of a <set function specification>.

3) The <column specification> of a <distinct set function> and each <column specification> in the <value 0
expression> of an <all set function> shall unambiguously reference a column of R and shall not
reference a column derived from a <set function specification>.

4) The <value expression> of an <all set function> shall include a <column specification> that references a
column of R and shall not include a <set function specification>. If the <column specification> is an
outer reference, then the <value expression> shall not include any operators. Note: "outer reference" is
defined in 5.7 "<column specification>". 0

5) The value returned by a set function, other than a count set function, is typed the same as the <column
specification> or <value expression> argument of the set function. The value returned by a count set
function is of type INTG defined in the DATABASE package.

6) If a <set function specification> contains a <column specification> that is an outer reference, then the
<set function specification> shall be contained in a <subquery> of a <having clause>. Note: "outer
reference" is defined in 5.7 "<column specification>".

7) Let T be the data type of the values that result from evaluation of the <column specification> or <value
expression>.

8) If SUM or AVG is specified, then T shall not be a character string or an enumeration.

Level I Implemnentaso Rules

DRAFT 39

- ~~~ y. - *.

1) <distinct set function>s shall not be used with UNIFY.

2) The <value expression> in an <all set function> shall not be of a string type with UNIFY.

General Rules

1) The argument of a <distinct set function> is a set of values. The set is derived by the elimination of any
null values and any redundant duplicate values from the column of R referenced by the <column
specification>.

2) The argument of an <all set function> is a multi-set of values. The multi-set is derived by the
elimination of any null values from the result of the application of the <value expression> to each row of
R. The specification or omission ofALL does not affect the meaning of an <all set function>.

3) Let S denote the argument of a <distinct set function> or an <all set function>.

4) Case:

a) If the <distinct set function> COUNT_DISTINCT is specified, then the result is the cardinality
of S.

b) If COUNT ('*') is specified, then the result is the cardinality of R.

c) If AVG, MIX, MIN, or SUM (with or without _ALL or -DISTINCT suffix) is specified and S is
empty, then the result is the null value.

d) If MIX or MIN (with or without _ALL or _DISTINCT suffix) is specified, then the result is
respectively the maximum or minimum value in S. These results are determined using the
comparison rules specified in 5.11 "<comparison predicate>".

e) If SUM (with or without _ALL or _DISTINCT suffix) is specified, then the result is the sum of
the values in S. The sum shall be within the range of the data type of the result.

f) If AVG (with or without _ALL or _DISTINCT suffix) is specified, then the result is the average
of the values in S. The sum of the values in S shall be within the range of the data type of the
result.

4

,p.

44) DRAFT.

5.9. <value expression>

Function

Specify a (possibly) computed value. 0

Format

<value expression>
[+ I -] <term>

I <value expression> + <term>
I <value expression> - <term>

<term>::=

<factor>
I <term> * <factor>
I <term> I <factor>

<factor>::
<primary>

<primary>::=
<value specification>

I <column specification.-
I <set function specification>
I (<value expression>)
I <type conversion>

Syntax Rules

1) A <value expression> that includes a <distinct set function> shall not include any dyadic operators.

2) The first <character> of the <token> following a monadic operator shall not be a plus or minus sign.

3) If the data type of a <primary> is character string or enumeration , then the <value expression> shall not
include any operators. The data type of the result is the same as that of the <primary>.

4) The data type of the result of a numeric operation is the same as that of the operand(s). Both operands to
a dyadic operation shall be of the same type.

5) Note that standard SQL permits monadic "+" or "-" operators before any <primary> used within a
<value expression>. The corresponding Ada unaryadding-operators may be applied only to an entire ,
simple-expression. Furthermore, a leading Ada unary-adding-operator is applied to the entire first term
within a simplejexpression, while a leading SQL monadic operator in a similar <value expression>
would be applied to the first <factor> within the <term>. Expressions written in Ada/SQL are
interpreted according to Ada rules. Due to the nature of the operations, however, the arithmetic results 0
will be the same as if SQL interpretation had been applied. Furthermore, any SQL <value expression> 7,

may be equivalently stated in Ada, using parentheses or depending on the properties of the arithmetic
operators, even though the Ada syntax is more restrictive.

Level I Implementation Rules

1) The +, -, *, and/ operators for database types shall not be redefined.]

General Rules

1) If the value of any <primary> is the null value, then the result of the <value expression> is the null
value.

2) If operators are not specified, then the result of the <value expression> is the value of the specified
<primary>.

.

DRAFT 41

- ' 9.: { " ' - 'p I I [1 'I, 'L F l t, i , l l i . .' ,1 # .l ~ , l l , ".,'

I
3) When a <value expression> is applied to a row of a table, each reference to a column of that table is a

reference to the value of that column in that row.

4)The monadic arithmetic operators + and - specify monadic plus and monadic minus, respectively.
Monadic plus does not change its operand. Monadic minus reverses the sign of its operand.

5) The dyadic arithmetic operators +, -, * and / specify addition, subtraction, multiplication, and division,
respectively. A divisor shall not be 0.

6) The result of an operation applied to one or more database values shall be appropriately representable by
the database rules.

7) Expressions within parentheses are evaluated first and when the order of evaluation is not specified by
parentheses, multiplication and division are applied before any leading monadic operator, which is
applied before addition and subtraction, and operators at the same precedence level are applied from left
to righL

4I

*

"Ui

42 DRAFT

CPEI7WRMRPWnr~ - IN.

5.10. <predicate>

Function

* Specify a condition that can be evaluated to give a truth value of "true", "false", or "unknown".

Formnat

<predicate>:=
<comparison predicate>

1 <between predicate>
* I <in predicate>

I <like predicate>
I <null predicate>
I <quantified predicate>
I <exists predicate>

* Syntax Rules

None.

General Rules

1) The result of a <predicate> is derived by applying it to a given row of a table.

DRAFT 43

5.11. <comparison predicate>

Functio

Specify a comparison of two values.

Format

<comparison predicate>::=
<equality operator> (<value expression> , <right comparison operand>)

I <value expression> <ordering operator> <right comparison operand>

<equality operator>
EQI NE

<ordering operator>::=
<l>l<ffil>f

<right comparison operand>::=
<value expression>

I <subquery>

Syntax Rules

1) The <right companson operand> of a <comparison predicate> may be either a (possibly computed)
value or a <subquery>.

2) The data types of the first <value expression> and the <right comparison operand> shall be the same.

Level I Implementation Rules

1) The <, >, <= and >= operators for database types shall not be redefined.

General Rules
1) Let x denote the result of the first <value expression> and let y denote the result of the <right

comparison operand>. The result of a <subquery> shall be at most one value.

2) If x or y is the null value or if the result of the <subquery> is empty, then "<equality operator> (x, y)" or
"x <ordering operator> y" is unknown. 0

3) If x or y are nonnull values, then "<equality operator> (x, y)" or "x <ordering operator> y" is either true
or false:

"EQ (x, y)" is true if and only if x and y are equal.
"NE (x, y)" is true if and only ifx and y are not equal.
"x < y" is true if and only if x is less than y. S
"x > y" is true if and only if x is greater than y.
"x<=y" is true if and onlyifxisnotgreaterthany.
"x >= y" is true if and only if x is not less than y.

4) Numbers, integers, and reals are compared with respect to their algebraic value.
5) The comparison of two character strings is determined by the comparison of <character>s with the same

ordinal position. If the strings do not have the same length, then the comparison is made with a
temporary copy of the shorter string that has been effectively extended on the right with <space>s so
that it has the same length as the other string.

6) Two strings are equal if all <character>s with the same ordinal position are equal. If two strings are not
equal, then their relation is determined by the comparison of the first pair of unequal <character>s from
the left end of the strings. This comparison is made with respect to the ASCII collating sequence. 0

7) Ordering and comparison of enumeration values follow the order of the corresponding position numbers

44 DRAFT

ZS

of the enumeration literals.

8) Although "EQ (x, y)" is unknown if both x and y are null values, in the contexts of GROUP BY,
ORDER BY and DISTINCT, a null value is identical to or is a duplicate of another null value.

kq m

'.':

DRAT 4

0

5.11.1. <type conversion>

F.5cdo

Specify the conversion of a value from one type to another.

Format

<type conversion>::=
CONVERTTO.4ype mark> (<value expression>)

Syntax Rules

1) The type of the result is the same as the <type mark>.

2) Numerics may be converted to and from all other numerics. Strings may be converted to and from all
other strings. Enumerations may be convened to and from other enumerations when one was derived
from the other or when both were derived from a third enumeration.

3) The <value expression> shall contain at least on database <column name>.

4) The conversion of derived types is allowed if the <left operand> type is derived from the <right
operand> type, directly or indirectly or vice versa.

5) The <type mark> shall be the fully expanded name of the result type of the conversion. This type shall
be defined in one of the <schema package>s named in the <context clause>.

General Rules

1) For underlying DBMSs not supporting strong data typing, type conversions merely affect comparability
and assignability of values, no type checking is really performed.

S46 DRAFT

%.' , .

5.12. <between predicate>

Function

Specify a range comparison.

Format

<between predicate>::=
(NOT] BETWEEN (<test value>,

<value expression> AND <value expression>)
<test value>::=

<value expression>

Syntax Rules

1) The data types of the <test value> and the two <value expression>s shall be the same.

General Rules

1) Let x denote the <test value>, and y and z denote the first and second <value expression>s, respectively.

2) "BETWEEN (x. y AND Z)" has the same result as " x >= y AND x <= Z".

3) "NOT BETWEEN (x, y AND z)" has the same result as "NOT (x <= y AND x <= z)". •

S• 4

DRAFT 47 !

5.13. <in predicate>

Function 9

Specify a quantified comparison.

Format

-in predicate>
(ISIN I NOT_IN'
(<value expression>, (<subquery> I <in value list> })

<in value list>::=

<value specification> [{ or <value specification>

Syntax Rules

1) The data types of the <value expression> and the <subquery> or all <value specification>s in the <m
value list> shall be the same.

General Rules

1) Let X denote the result of the <value expression>. Let S denote the result of the <subquery> as in a
<quantified predicate>, or the values specified by the <in value list>.

2) "IS-IN (X, S)" has the same result as "EQ (X, (ANY (S))". "NOT-IN (X, S)" has the same result as
"NOT (ISIN (X, S))".

,'aI4

'N-

48 DRAFT%

5.14. <like predicate>

Function

Specify a pattern-match comparison.

Format

<W predicate>::=
[NOT] LIKE (<column specification>, <pattern>

[, ESCAPE => <escape character>])

<pattern> ::=
<value specificar :,n>

<escape character> ::='
<value specification>

Syntax Rules

1) The <column specification> is the specification of the column to be tested. The <column specification>
shall reference a character string column.

2) The data type of the <pattern> shall be the same as that of the <column specification>. %

3) The <escape character> shall reference a character string with a length of one, of the same type as the S
pattern.

Level I Implementation Rules

1) An <escape character> may not be specified with UNIFY.

I 2) The <pattern> may not include ? or * characters with UNIFY.

General Rules

1) Let x denote the value referenced by the <column specification> and let y denote the result of the <value
specification> of the <pattern>.

2) Case:

a) If an <escape character> is specified, then:

i) Let z denote the result of the <value specification> of the <escape character>.

ii) There shall be a partitioning of the string y into substrings such that each substring is of
length I or 2, no substring of length 1 is the escape character z, and each substring of
length 2 is the escape character z followed by either the escape character z, an underscore
character, or the percent sign character. In that partitioning of y, each substring of length
2 represents a single occurrence of the second character of that substring. Each substring
of length I that is the underscore character represents an arbitrary character specifier.
Each subsuring of length 1 that is the percent sign character represents an arbitrary string
specifier. Each substring of length 1 that is neither the underscore character nor the
percent sign character represents the character that it contains.

b) If an <escape character> is not specified, then each underscore character in y represents an
arbitrary character specifier, each percent sign character in y represents an arbitrary string
specifier, and each character in y that is neither the underscore character nor the percent sign
character represents itself.

3) The string y is a sequence of the minimum number of substring specifiers such that each <character> of
y is part of exactly one substring specifier. A substring specifier is an arbitrary character specifier, an
arbitrary string specifier, or any sequence of <character>s other than an arbitrary character specifier or

DRAFT 49 "S
'p..

an arbitrary string specifier.

4) "LIKE (x, y)" is unknown if x or y is the null value. If x and y are nonnull values, then "LIKE (x, y)" is
either true or false.

5) "LIKE (x, y)" is true if there exists a partitioning of x into substrings such that:

a) A substring of x is a sequence of zero or more contiguous <character>s of x and each
<character> of x is part of exactly one substring.

b) If the nth substring specifier of y is an arbitrary character specifier, the nth substring of x is any
single <character>.

c) If the nth substring specifier of y is an arbitrary string specifier, the nh substring of x is any
sequence of zero or more <character>s.

d) If the nth substring specifier of y is neither an arbitrary character specifier nor an arbitrary string
specifier, the nth substring of x is equal to that substring specifier and has the same length as that
substring specifier.

e) The number of substrings of x is equal to the number of substring specifiers of y.

6) "NOT LIKE (x, y)" has the same result as "NOT (LIKE (X, y))".

r
I5

I,

"'V

V.

50 DRAF ..-,%

-I' i

5.15. <null predicate>

Specify a test for a null value. 0

Format

<null predicate>
(IS-NULL I ISNOTNULL } (<column specification>)

Syntax Rules

None.

Level I Implementation Rules

1) <null predicate>s shall not be used with UNIFY.

General Rules

1) Let x denote the value referenced by the <column specification>.

2) "IS-NULL (x)" is either true or false.

3) 'ISNULL (x)" is true if and only ifx is the null value. •

4) "ISJNOTNULL (x)" bas the same result as "NOT ISNULL (x)".

S)

DRAFT 51

_A A

5.16. <quantified predicate>

Functon

Specify a quantified comparison.

Format

<quantified predicate>
<equality operator> (<value expression>, <quantified subquery>)

I <value expression> <ordering operator> <quantified subquery>

<quantified subquery> ::=
<quantifier> (<subquery>)

<quantifier>
<all>

I <some>

<all> ::=
ALLL

<some>
SOME

IANY m

Syntax Rules

1) The data types of the <value expression> and the <quantified subquery> shall be the same.

Level I Implementaton Rules

1) <qualified predicate>s shall not be used with UNIFY.

General Rules

1) Let X denote the result of the <value expression> and let S denote the result of the <subquery>.

2) The result of "<equality operator> (X, <quantifier> S)" or "X <ordering operator> <quantifier> S" is
derived by the application of the implied <comparison predicate> "<equality operator> (X, S)" or "X
<ordering operator> S" to every value in S.

3) Case:

a) If S is empty or if the implied <comparison predicate> is true for every value s in S, then
'<equality operator> (X, <all> S)" and "X <ordering operator> <all> S" are true.

b) If the implied <comparison predicate> is false for at least one value s in S, then "<equality
operator> (X, <all> S)" and "X <ordering operator> <all> S" are false.

c) If the implied <comparison preicate> is true for at least one value s in S, then "<equality
operator> (X, <some> S)" and "X <ordering operator> <some> S" are true.

d) If S is empty or if the implied <comparison predicate> is false for every value s in S, then
1"<equality operator> (X, <some> S)" and "X <ordering operator> <some> S" are false. 0

e) If "<equality operator> (X, <quantifier> S)" or "X <ordering operator> <quantifier> S" is neither
true nor false, then it is unknown.

52 DRAFT
e-

5.17. <exists predicate>

Function

Specify a test for an empty set.

Format

<xxists predicate>::=
EXISTS (<subquery>)

Syntax Rules

None.

Level I Implementation Rules

1) <exists predicate>s shall not be used with UNIFY.

General Rules

1) Let S denote the result of the <subquery>.

2) "EXISTS (S)" is either true or false.

3) "EXISTS (S)" is true if and only if S is not empty. 0

0 .

DRAFT
53 S..

5.18. <search condition>

Function

Specify a condition that is "true", "false", or "unknown" depending on the result of applying boolean operators to
specified conditions.

Format

<search condition> ::=
<boolean factor> [{AND <boolean factor> } ...]

I <boolean factor> [OR <boolean factor>

<boolean factor>::=
[NOT] <boolean pnmary>

<boolean primary>::=
<predicate>

I (<search condition>)

Syntax Rules

1) Combinations of ANDs and ORs shall be parenthesized to clearly show order of evaluation. <This
differs from SQL syntax but is required by Ada syntax>.

2) A <column specification> or <value expression> specified in a <search condition> is directly contained
in that <search condition> if the <column specification> or <value expression> is not specified within a
<set function specification> or a <subquery> of the <search condition>.

General Rules

1) The result is derived by the application of the specified boolean operators to the conditions that result 0
from the application of each specified <predicate> to a given row of a table or a given group of a
grouped table. If boolean operators are not specified, then the result of the <search condition> is the
result of the specified <predicate>.

2) NOT (true) is false, NOT (false) is true, and NOT (unknown) is unknown. AND and OR are defined by
the following truth tables:

AND True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

OR True False Unknown
True True True True 0

False True False Unknown

Unknown True Unknown Unknown

5) Expressions within parentheses are evaluated first. When used without parentheses, NOT is applied

54 DRAFT
A S

before AND or ORL Uzyarenthesized operators of dhe same type are applied from left to right.

6) When a <search condition> is applied to a row of a table, each reference to a column of that table by a
<column specification> directly contained in the <search condition> is a reference to the value of that
column in that row.

VI,

DRAFT 55

5.19. <table expression>

Function

Specify a table or a grouped table.

Format

<table expression>
<from clause>
[<where clause>]

[,<group by clause>]
[,<having clause>]

Syntax Rules

1) If the table identified in the <from clause> is a grouped view, then the <table expression> shall not
contain a <where clause>, <group by clause>, or <having clause>.

General Rules

1) If all optional clauses are omitted, then the table is the result of the <from clause>. Otherwise, each
specified clause is applied to the result of the previously specified clause and the table is the result of the
application of the last specified clause. The result of a <table expression> is a derived table in which the
n-i column inherits the description of the nth column of the table specified by the <from clause>.

I

e

lie.

56 DRAFT

I"

5.20. <from clause>

Faanton

Specify a table derived from one or more named tables. S

Format

from clause>::=
FROM => <table reference> [{ & <table reference> ...]

<table reference>::=
[<correlation name>. I <table name>

Syntax Rules

1) A <table name> specified in a <table reference> is exposed in the containing <from clause> if and only
if that <table reference> does not specify a <correlation name>.

2) A <table name> that is exposed in a <from clause> shall not be the same as any other table name> that
is exposed in that <from clause>.

3) A <correlation name> specified in a <table reference> shall not be the same as any other <correlation
name> specified in the containing <from clause>, and shall not be the same as the <table identifier> of
any <table name> that is exposed in the containing <from clause>. S

4) The scope of <correlation name>s and exposed table name>s specified in a <from clause> is the
innermost <subquery>, <query specification>, or <select statement> that contains the <table
expression> in which the <from clause> is contained. A <table name> that is specified in a <from
clause> has a scope defined by that <from clause> if and only if the <table name> is exposed in that
<from clause>.

5) If the table identified by <table name> is a grouped view, then the <from clause> shall contain exactly
one <table reference>. 6;'*'

6) Case: ',

a) If the <from clause> contains a single <table name>, then the description of the result of the %
<from clause> is the same as the description of the table identified by that <table name>. .

b) If the <from clause> contains more than one <table name>, then the description of the result of 0
the <from clause> is the concatenation of the descriptions of the tables identified by those <table
name>s, in the order in which the <table name>s appear in the <from clause>.

7) In Ada/SQL, a <correlation name> is actually a package instantiated from the generic package specific
to each <table name>. In order to define a <correlation name>, the appropriate generic package must be
instantiated, in one of the two following ways:

package <correlation name> is new
<table identifier>_CORRELATIONNAM ;

package <correlation name> is new
<authorization identifier>_<table identifier>_CORRELATIONNAMIE;

Note that the generic packages are, in general, named <table name>_CORRELATIONNAME, except
that an <authorization identifier> used within a <table name> is separated from the <table identifier> by
an underscore.

Although <correlation name>s are specifically declared to pertain to specific tables, the same
<correlation name> may be reused within different scopes of the same statement, to refer to different
instances of the same table.

General Rules

DRAFT 57

1) The specification of a <correlation name> or exposed <table name> in a <table reference> defines that
<correlation name> or <table name> as a designator of the table identified by the <table name> of that
<table reference>.

2) Case:

a) If the <from clause> contains a single <table name>, then the result of the <from clause> is the
table identified by that <table name>.

b) If the <from clause> contains more than one <table name>, then the result of the <from clause>
is the extended Cartesian product of the tables identified by those <table names>s. The extended
Cartesian product, R, is the multi-set of all rows r such that r is the concatenation of a row from
each of the identified tables in the order in which they are identified. The cardinality of R is the
product of the cardinalities of the identified tables. The ordinal position of a column in R is n+s,
where n is the ordinal position of that column in the named table T from which it is derived and s
is the sum of the degrees of the tables identified before T in the <from clause>.

'R

..

?A

)a

Ia

d9

' i_

58 DRAFT

,ruF

5.21. <where clause>

Function
Specify a table derived by the application of a <search condition> to the result of the preceding <firom clause>. S

Format

<where clause>
WHERE => <search condition>

Syntax Rules

1) Let T denote the description of the result of the preceding <from clause>. Each <column specification>
directly contained in the <search condition> shall unambiguously reference a column of T or be an outer
reference. Note: "outer reference is defined in 5.7 "<column specification>".

2) A <value expression> directly contained in the <search condition> shall not include a reference to a
column derived from a function.

3) If a <value expression> directly contained in the <search condition> is a <set function specification>,
then the <where clause> shall be contained in a <having clause> and the <column specification> in the
<set function specification> shall be an outer reference.

General Rules

1) Let R denote the result of the <from clause>. 0

2) The <search condition> is applied to each row of R. The result of the <where clause> is a table of those
rows of R for which the result of the <search condition> is true.

3) Each <subquery> in the <search condition> is effectively executed for each row of R and the results
used in the application of the <search condition> to the given row of R. If any executed <subquery>
contains an outer reference to a column R, then the reference is to the value of that column in the given 0
row of R.

mA5

5.22. <group by clause>

Function

Specify a grouped table derived by the application of the <group by clause> to the result of the previously specified
clause.

Format

<group by clause>::=
GROUP_BY => <column specification> [{ & <column specification> } ...]

Syntax Rules

1) Let T denote the description of the result of the preceding <from clause> or <where clause>.

2) Each <column specification> in the <group by clause> shall unambiguously reference a column of T. A
column referenced in a <group by clause> is a grouping column.

General Rules

1) Let R denote the result of the preceding <from clause> or <where clause>.

2) The result of the <group by clause> is a partitioning of R into a set of groups. The set is the minimum
number of groups such that, for each grouping column of each group of more than one row, all values of
that grouping column are identical.

3) Every row of a given group contains the same value of a given grouping column. When a <search
condition> or <value expression> is applied to a group, a reference to a grouping column is a reference
to that value.

,

60 DRAFT

I% 'Zylz L -

5.23. <having clause>

Specify a restriction on the grouped table resulting from the previous <group by clause> or <from clause> by
eliminating groups not meeting the <search condition>.

Format

<having clause>::=
HAVING => <search condition>

Syntax Rules

1) Let T denote the description of the result of the preceding <from clause>, <where clause>, or <group by
clause>. Each <column specification> directly contained in the <search condition> shall
unambiguously reference a grouping column of T or be an outer reference. Note: "outer reference" is
defined in 5.7 "<column specification>".

2) Each <column specification> contained in a <subquery> in the <search condition> that references a
column of T shall reference a grouping column of T or shall be specified within a <set function
specification>.

General Rules

1) Let R denote the result of the preceding <from clause>, <where clause>, or <group by clause>. If that
clause is not a <group by clause>, the R consists of a single group and does not have a grouping column.

2) The <search condition> is applied to each group of R. The result of the <having clause> is a grouped
table of those groups of R for which the result of the <search condition> is true.

3) When the <search condition> is applied to a given group of R. that group is the argument or argument ,.p

source of each <set function specification> directly contained in the <search condition> unless the S
<column specification> in the <set function specification> is an outer reference.

4) Each <subquery> in the <search condition> is effectively executed for each group of R and the result
used in the application of the <search condition> to the given group of R. If any executed <subquery>
contains an outer reference to a column of R, then the reference is to the values of that column in the
given group of R.

!,W

!S

DRAFT 61

- 4 .- ,*
.- 4.-.V-.t.-%,

-N. .'."'.4 .

- .I-J~y.*..* -.
0.

5.24. <subquery>

Functio

Specify a multi-set of values derived from the result of a <table expression>.

Format

<subquery>
[SELEC I SELECT_ALL I SELECTDISTINCT]

(<subquery result specification>, <table expression>)

<subquery result specification>::=
<value expression>

Syntax Rules

1) The applicable <privilege>s for each <table name> contained in the <table expression> shall include S
SELEC. Note: the "applicable <privileges>" for a <table name> will be defined in "<privilege
definition>" for later levels of Ada/SQL. In Level 1, privileges are as defined to the underlying DBMS.

2) Case:

a) If the <subquery result specification> '*' is specified in a <subquery> of any <predicate> other
than an <exists predicate>, then the degree of the <table expression> shall be 1, and the
<subquery result specification> is equivalent to a <value expression> consisting of a <column
specification> that references the sole column of the <table expression>.

b) If the <subquery result specification> "*" is specified in a <subquery> of an <exists predicate>,
then the <subquery result specification> is equivalent to an arbitrary <value expression> that
does not include a <set function specification> and that is allowed in the <subquery>.

3) The data type of the values of the <subquery> is the data type of the implicit or explicit <value
expression>.

4) Let R denote the result of the <table expression>.

5) Each <column specification> in the <value expression> shall unambiguously reference a column of R.

6) If R is a grouped view, then the <subquery result specification> shall not contain a <set function
specification>.

7) If R is a grouped table, then each <column specification> in the <value expression> shall reference a
grouping column or be specified within a <set function specification>. If R is not a grouped table and
the <value expression> includes a <set function specification>, then each <column specification> in the
<value expression> shall be specified within a <set function specification>.

8) A <subquery>, excluding any <subquery> contained within it, shall contain at most one use of an
Ada/SQL keyword ending in DISTINCT (SELECTDISTINCT, AVG_DISTINCT, MAXDISTINCT,
NUN_DISTINCT, SUMDISTINCT, COUNTDISTINCT).

9) If a <subquery> is specified in a <comparison predicate>, then the <table expression> shall not contain a
<group by clause> or a <having clause> and shall not identify a grouped view.

General Rules

1) If R is not a grouped table and the <value expression> includes a <set function specification>, then R is
the argument or argument source of each <set function specification> in the <value expression> and the
result of the <subquery> is the value specified by the <value expression>.

2) If R is not a grouped table and the <value expression> does not include a <set function specification>,
then the <value expression> is applied to each row of R yielding a multi-set of n values, where n is the]
cardinality of R. If SELECTDISTINCT is not specified. then the multi-set is the result of the

'.62 DRAFT ,

2) If

<subquery>. If SELECTDISTINCT is specified, then the result of the <subquery> is the set of values
derived from that multi-set by the elimination of all redundant duplicate values.

3) If R is a grouped table, then the <value expression> is applied to each group of R yielding a multi-set of
n values, where n is the number of groups in R. When the <value expression> is applied to a given
group of R, that group is the argument or argument source of each <set function specification> in the
<value expression>. If SELECT_DISTINCT is not specified, then the multi-set is the result of the
<subquery>. If SELECTDISTINCT is specified, then the result of the <subquery> is the set of values
derived from that multi-set by the elimination of any redundant duplicate values.

6

-p

S m

I

DR0F6

5.25. <query specification>

Function

Specify a table derived from the result of a <table expression>.

Format

<query specification>::=
[SELEC I SELECTALL I SELECTDISTINCT I

(<select list>, <table expression>)

<select list> ::=
<value expression> [& <value expression> } ... I

I 'l'

Syntax Rules

1) The applicable <pivilege>s for each <table name> contained in the <table expression> shall include
SELEC. Note: the "applicable <privileges>" for a <table name> will be defined in "<privilege
definition> "for later levels of Ada/SQL. In Level 1, privileges are as defined to the underlying DBMS.

2) Let R denote the result of the <table expression>.

3) The degree of the table specified by a <query specification> is equal to the cardinafity of the <select
list>.

4) The <select list> '*' is equivalent to a <value expression> sequence in which each <value expression> is
a <column specification> that references a column of R and each column of R is referenced exactly
once. The columns are referenced in the ascending sequence of their ordinal position within R.

5) Each <column specification> in each <value expression> shall unambiguously reference a column of
R. A <query specification>, excluding any <subquery> contained within it, shall contain at most one use
of an Ada/SQL keyword ending in DISTINCT (SELECTDISTINCT, AVGDISTINCT,
MAXDISTINCT, M[NUDISTINCT, SUM-DISTINCT, COUNTDISTINCT).

6) If R is a grouped view, then the <select list> shall not contain a <set function specification>.

7) If R is a grouped table, then each <column specification> in each <value expression> shall reference a
grouping column or be specified within a <set function specification>. If R is not a grouped table and
any <value expression> includes a <set function specification>, then every <value expression> shall be

AI specified within a <set function specification>.

8) Each column of the table that is the result of a <query specification> has the same data type as the
<value expression> from which the column was derived.

9) If the nth <value expression> in the <select list> consists of a single <column specification>, then the nth

column of the result is a named column whose <column name> is that of the <column specification>.
Otherwise. the nth column is an unnamed column.

10) A column of the table that is the result of a <query specification> is constrained to contain only nonnull
values if and only if it is a named column that is constrained to contain only nonnull values.

I1) A <query specification> is updatable if and only if the following conditions hold:

a) SELECT_DISTINCI is not specified.

b) Every <value expression> in the <select list> consists of a <column specification>.

c) The <from clause> of the <table expression> specifies exactly one <table reference>, and that
<table reference> refers to an updatable table.

d) The <where clause> of the <table expression> does not include a <subquery>.

e) The <table expression> does not include a <group by clause> or a <having clause>.

64 DRAFT

General Rules

1) If R is not a grouped table and the <select list> includes a <set function specification>, then R is the
argument or argument source of each <set function specification> in the <select list> and the result of
the <query specification> is a table consisting of one row. The nth value of the row is the value
specified by the nd <value expression>.

2) If R is not a grouped table and the <select list> does not include a <set function specification>, then each
<value expression> is applied to each row of R yielding a table of m rows, where m is the cardinality of
R. The ni column of the table contains the values derived by the applications of the nth <value
expression>. If SELECT_DISTINCT is not specified, then the table is the result of the <query
specification>. If SELECTDISTINCT is specified, then the result of the <query specification> is the
table derived from that table by the elimination of any redundant duplicate rows.

3) If R is a grouped table that has zero groups and some <value expression> in the <select list> is a
<column specification>, then the result of the <query specification> is an empty table. If R is a grouped
table that has zero groups and every <value expression> in the <select list> is a <set function
specification>, then the result of the <query specification> is a table having one row. The nt value in
that row is the result of the nth <set function specification> in the <select list>.

4) If R is a grouped table that has one or more groups, then each <value expression> is applied to each
group of R yielding a table of m rows, where m is the number of groups in R. The nth column of the
table contains the values derived by the applications of the ndh <value expression>. When a <value
expression> is applied to a given group of R, that group is the argument or argument source of each <set
function specification> in the <value expression>. If SELECTDISTINCT is not specified, then the
table is the result of the <query specification>. If SELECT_DISTINCT is specified, then the result of
the <query specification> is the table derived from that table by the elimination of any redundant
duplicate rows.

5) A row is a duplicate of another row if and only if all pairs of values with the same ordinal position are
identical.

* S

:%

1A1

•*]

* S

,.,

'. - -- '. .h ' . % i' - ' - - '.
-

" ".''' ,. .", " ". ". ". ". . '."". . ,,"' , "h '.." -, "% " 'h' ," , , ,°

1%~b

pd

44

44

4.4b

66 DRAFT

6. Schema Definition Language

6.1. <schema>

Function

Define a <schema>.

* Format

<schema>::= <schema compilation unit>...

<schema compilation unit>::=
<authorization package compilation unit>

I <schema package compilation unit>

Syntax Rules

1) The <schema compilation unit>s within a <schema> need not be part of the same compilation.

2) A <schema> shall contain exactly one <authorization package compilation unit>.

3) All <schema package compilation unit>s referencing the same <authorization package compilation unit>
are part of the same <schema>.

General Rules

None. ,

6

* I

I%

6.1.1. <authorization package compilation unit>

Function

Define an <authorization identifier>.

Format

<authorization package compilation unit>
with SCHEMADEFINIION; use SCHEMADEFINITION;
<authorization package specification>;

<authorization package specification>::=
package <identifier> is
function <authorization identifier> is new AUTHORIZATION_IDENTIFIER;

end [<package simple name> I h

<package simple name>::= <identifier>

Syntax Rules

1) The <package simple name>, if used within the <authorization package specification>, must repeat the
<identifier>.

2) The <authorization identifier> shall be different from the <authorization identifier> of any other
<schema> in the same environment.

3) An <authorization package specification> is said to define an authorizationpackage, and the
<identifier> is taken as the name of that authorization package.

General Rules

None.

I I

li68 DRAFT

I'

, .. , . . .',. : , .- .. :. .2..;, ;' . . N,. '...,¢ 2, . . . ",. '. .- '2 . . " -%'. '. ',...2... " .-. ,-. -.-

6.1.2. <schema package compilation unit>

Function

Define a portion of a <schema> that may be separately compiled. S

Format

<schema package compilation unit>
<context clause>
<schema package specification>;

<schema package specification> ::=
package <identifier> is
(<use clause> ...]
package ADASQL is
[<use clause>...]
[<schema authorization clause>]
(<schema specification element> ...]

end ADA.SQL;
end [<package simple name>]

<schema authorization clause>::=
SCHEMAAUTHORIZATION: IDENTIFIER:= <schema authorization identifier>;

<schema authorization identifier> ::= <authorization identifier>

<schema specification element> ::=
<type declaration>

I <subtype declaration>
I <table definition>

Syntax Rules

1) The <authorization identifier> shall match one directly contained within an <authorization package
specification>. The <schema package compilation unit> is said to reference the <authorization package
compilation unit> containing that <authorization package specification>.

2) A <with clause> and a <use clause> of the <context clause> shall each contain the name of the P
authorization package defining the <authorization identifier>.

3) If the schema package contains one or more table declarations, it shall then contain a <schema
authorization clause>, and a <with clause> and a <use clause> of the <context clause> shall each name
SCHEMA_DEFINITION,

4) The <package simple name>, if used within the <schema package specification>, must repeat the
<identifier>.

5) The only <unit simple name>s that may be used within a <context clause> of a <schema package
compilation unit> are those of schema packages, plus the following predefined packages:
SCHEMADEFINITION, DATABASE.

Level I Implementatin Rules.

1) Each <schema package compilation unit> shall be placed in its own source file. The name of this
source file shall be the same as that of the schema package defined, except that a system-dependent %
name augmentation may be used to indicate that the file contains Ada source code. This augmentation
will be defined for each specific AdalSQL system.

General Rules

DRAFT 69

Nooc.
is

"a

~g.

K

K

p.

'p.

'I

4'

I'

K"

a'.
9.
K"

St

.,J.

I'

is
is

70 DRAFT

6.1.3. <context clause>

Functok

* Specify other packages required by a package.

Format

<context clause>
[I <with clause> [<use clause> ...] I...]

<with clause>::=
with <unit simple name> ,<unit simple name>}...];

<use clause>::=
use <package name> [f , <package name> I --. 1;

Syntax Rules

1) The form of <unit simple name> . ADASQL as a <package name> is permitted only if <unit simple
name> is the name of a schema package, and is not permitted within a <context clause>.

2) A <unit simple name> contained within a <use clause> shall be contained within a textually prior <with
clause>.

Level I Implementation Rules

1) The file containing a schema package named in a <context clause> shall be accessible using only its
name, without any other operating system dependent path information, at the time the <context clause>
is processed by any Ada/SQL automated tool.

General Rules

None.

DRAFT 71

* I

6.1.4. <type declaration>

Declare a data type.

Format

<type declaration>
<fil type declaration>

<full type declaration>::
type <ype identifier> is <type definition>;

<type definition>::
<data type>

I <derived type definition>

Syntax Rules
1) The <type identifier> shall not contain a _NOT _NULL or _NOT_NULL,_UNIQUE suffix.

2) The <type identifier> is defined as the name of the type.

3) The <type identifier> shall be different from the <type identifier> or <table name> defined by any other
<schema specification element> in the containing <schema package specification>.

General Rules

None.

J

(.

72 DRA.1

6.1.5. <subtype declaration>

Function

Declare a data subtype.

Format

<subtype declaration> ::=
subtype <type identifier> is <subtype indication>;

Syntax Rules

1) Case:

a) If the <type identifier> contains neither the _NOTNULL nor the _NOTNULLUNIQUE
suffix, then the <type identifier> within the <type mark> of the <subtype indication> shall also
not contain either of these suffixes.

b) If the <type identifier> contains the _NOTNULL suffix, then:

i) The <type identifier> within the <type mark> of the <subtype indication> shall not
contain any suffix.

ii) The <identifier> of the <type identifier> within the <type mark> of the <subtype
indication> shall match the <identifier> within the <type identifier>.

iii) The <subtype indication> shall not contain a <constraint>.

c) If the <type identifier> contains the _NOT_NULL_UNIQUE suffix, then:

i) The <type identifier> within the <type mark> of the <subtype indication> shall either
contain no suffix or shall contain the _NOT_NULL suffix.

ii) The <identifier> of the <type identifier> within the <type mark> of the <subtype
indication> shall match the <identifier> within the <type identifier>.

iii) The <subtype indication> shall not contain a <constraint>.

2) The <type identifier> is defined as the name of the subtype.

3) The <type identifier> shall be different from the <type identifier> or <table name> defined by any other
<schema specification element> in the containing <schema package specification>.

General Rules

None.

DRAFT 73

6.2. <table definition>

FUnction

Define a table.

Format

<table definition>::=
type <table name> is
record

<table element> ... I
end record;

<table element>::= <column definition>;

Syntax Rules

1) The <table name> shall not contain an <authorization identifier>. 0

2) The <table name> shall be different from the <table name> of any other <table definition> in the
containing <schema>.

3) The <table name> shall be different from the <,xype identifier> or <table name> defined by any other
<schema specification element> in the containing <schema package specification>.

4) The description of the table defined by a <table definition> includes the name <table name> and the .
column description specified by each <column definition>. The ith column description is given by the
ith <column definition>.

Level I Implementation Rules a.

1) A <table name> must match exactly the name of a table in the database.

General Rules

1) A <table definition> defines either a base table or a viewed table. Which is defined depends on the
definition of the table within the database.

V

74 DRAFT

xz

6.3. <column definition>

Function

Define a column of a table.

Format

<column definition>
<column name>: <subtype indication>

Syntax Rules S

I) The <column name> shall be different from the <column name> of any other <column definition> in the .

containing <table definition>.

2) The nm column of the table is described by the nh <column definition> in the <table definition>.

3) The description of the column defined by a <column definition> includes the name <column name> and
the data type specified by the <type mark> and optional <constraint> of the <subtype indication>.

Level I Implementation Rules

1) The <column name> shall match the name of the corresponding column in the database table whose
name is given by the <table name> of the enclosing <table definition>.

2) Case: .

a) If the <type identifier> of the <type mark> of the <subtype indication> contains neither the
NOT NULL nor the _NOTNULLUNIQUE suffix, then the corresponding database column

shall not have a NOT NULL or a NOT NULL UNIQUE constraint placed on it.

b) If the <type identifier> of the <type mark> of the <subtype indication> contains the
-NOT NULL suffix, then the corresponding database column shall be constrained to contain "
only NOT NULL values.

c) If the <type identifier> of the <type mark> contains the _NOTNULLUNIQUE suffix, then the
corresponding database column shall be constrained to contain only NOT NULL UNIQUE
values.

General Rules 0

1) If a column is constrained to contain only nonnull or unique values, then the constraint is effectively
checked after the execution of each <Ada/SQL statement>.

p.'

4,

'N

DRAFT 75 i
% %%

IiI

i-K

6.4. <unique constraint definition>

6.5. <view definition>

6.6. <privilege definition>
e

These items are not defined in Level I Ada/SQL. They must be defined for the database using DBMS facilities before
Ada/SQL programs are run against the database.

76 DRAFT "

:..

II

7. Program Environment

7.1. <program environment>

Function

Define the program environment of an Ada/SQL program.

Format

<program environment>
<Ada/SQL package compilation unit> ...
<authorization package compilation unit>
<schema package compilation unit> ...<Ada/SQL variable package compilation unit> ...<Ada/SQL package compilation unit>::=

<Ada/SQL context clause>
C <Ada context clause>

<library unit body>

<Ada/SQL context clause>::=
<with clause> 0
[<use clause>]

Syntax Rules

1) The <with clause> and optional <use clause> of the <Ada/SQL context clause> shall name all <schema
package compilation unit>s and <Ada/SQL variable package compilation unit>s necessary for the
<Ada/SQL compilation unit>. 0

2) The <library unit body> shall consist of regular Ada statements and <Ada/SQL DML statements>. %

General Rules

None.

DRAFT
77I%

o

i4

",,-
r".-,q.. . '..%- - .

.. ' , .". ," " " " "... ' -' w . .. ,.. ,-." .", ," " " /",/ ° e " ,'-. --p

* ,S .,_ L'. . .,3':L'. ,. -'n _'_"5 , .-, '.,-,r . -, . % .-. .'. % '. .m .,, ..,"k T,..- , . ,; .', .,..,

7.2. <Ada/SQL variable package compilation unit>

Functim

Define the program variables that will be used in Ada/SQL DML statements.

Format

<Ada/SQL variable package compilation unit>
<context clause>
<Ada/SQL variable package specification>;

<Ada/SQL variable package specification>::=
package <identifier> is

[<use clause>...]
[<variable declarations> ...]

end [<package simple name>]

Syntax Rules

1) The only <unit simple name>s that may be used within a <context clause> of a <Ada/SQL variable
package compilation unit> are those of schema packages, plus the predefined package
CURSORDEFINITION.

2) The <variable declarations> shall declare program variables to be used with the Ada/SQL DML
statements. All <variable declarations> must be of types defined in <schema package compilation
units> or of type CURSORNAME defined in package CURSORDEFINITION.

3) The <package simple name>, if used within the <Ada/SQL variable package specification>, must repeat
the <identifier>.

Level I Implementation Rules.

1) Each <AdalSQL variable package compilation unit> shall be placed in its own source file. The name of
this source file shall be the same as that of the variable package defined, except that a system-dependent
name augmentation may be used to indicate that the file contains Ada source code. This augmentation
will be defined for each specific AdalSQL system.

General Rules

None.

78 DRAFT

5'.

" 5, ""' ; :" '' ' ". . .""'"" ' ' " ' "'"- " ' . - ' " .? " - ° ; . , .,'"; """" """"2'.)""

.''"" """""--' -""" """"1 -" ... -: '

8. Data Manipulation Language

8.1. <close statement> I
Function

Close a cursor.

Format

<close statement>::=
CLOSE (<cursor nane>) ;

Syntax Rules

1) The <cursor name> is a program variable of type CURSORNAME, which is a private type defined by
the implementation.

General Rules

1) The cursor, CR, named by <cursor name>, shall be in the open state.

2) Cursor CR is placed in the closed state and the copy of the <cursor specification> of CR is destroyed.

.5.7

DRAFTA7

.'

,,- , ,,- : .e-. :.Xe .,- , ;ed .; :.. :,.\. :.,: . ; 2 ., /= .: ,: ,, ;., ; ., ; , ,:. . .: ,' . .;," ,, ,, . . 3

8.2. <commit statement>

Function

Terminate the current transaction with commit. s

Format

<commit statement>::=
CO _WORK;

Syntax Rules

None.

Level I Implementation Rules

1) <commit statement>s shall not be used with UNIFY transactions are not supported.

General Rules

1) The current transaction is terminated.

2) Any cursors that were opened by the current transaction are closed.

3) Any changes to the database that were made by the current transaction are committed.

U,,

I

I

80 DRAFT
.,

8.3. <declare cursor>

Function

Define a cursor.

Format

<declare cursor>::=
DECLAR (<cursor name>, CURSORFOR => <cursor specification>);

<cursor specification> ::=
<query expression> [,<order by clause>]

<query expression>
<query term>

I <query expression> & (UNION I UNIONALL I (<query term>)
I <query expression> & (UNION I UNIONALL) <query term>

<query term> ::=
<query specification>

I (<query expression>)

<order by clause> ::=
ORDERBY => <sort specification> [& <sort specification> } .]

<sort specification>
<sort column specification>

I ACS (<sort column specification>)
I DESC (<sort column specification>)

<sort column specification>::=
<column number>

I <column specification>

Syntax Rules

1) The <cursor name> is the cursor to be declared, a program variable of type CURSORNAME, which is I
a private type defined by the implementation.

2) If a <query expression> including a UNION or UNIONALL contains an unparenthesized <query
term>, then that <query term> shall be of the form (<query expression>).

3) A <column number> shall be a positive integer of type COLUMNNUMBER.
4) Let T denote the table specified by the <cursor specification>.

5) Case: %e

a) If ORDER_BY is specified, then T is a read-only table with the specified sort order.

b) If neither ORDER_BY, UNION, nor UNION_ALL is specified and the <query specification> is
updatable, then T is an updatable table.

c) Otherwise, T is a read-only table.

6) Case:

a) If neither UNION nor UNION_ALL is specified, then the description of T is the description of
the <query specification>.

b) If UNION or UNIONALL is specified, then for each UNION or UNIONALL that is specified,
except for <column name>s the description of the table specified by the first <query expression>

DRAFT 81

0 5

Ivy

and the <query term> shall be identical. All columns of the result are unnamed. Except for
<column name>s the description of the result is the same as the description of the tables
specified by the fist <query expression> and the <query term>.

7) If ORDER_BY is specified, then each <column specification> in the <order by clause> shall identify a
column of T, and each <column number> in the <order by clause> shall be greater than zero and not
greater than the degree of T. A named column may be referenced by a <column number> or a <column
specification>. An unnamed column shall be referenced by a <column number>.

Level I Implementation Rules

1) No UNIONS shall be used with UNIFY.

2) No <column numbers> shall be used as <sort column specification>s with UNIFY.

3) No <order by clause> shall include GROUPBY in UNIFY.

General Rules

1) The <cursor name> shall not name an open cursor.

2) Case:

a) If T is an updatable table, then the cursor is associated with the named table identified by the
<table name> in the <from clause>. Let B denote that named table. For each row in T, there is a
corresponding row in B from which the row of T is derived. When the cursor is positioned on a
row of T, the cursor is also positioned on the corresponding row of B.

b) Otherwise, the cursor is not associated with a named table. 5%

3) Whether T is a temporary viewed table or a temporary base table is is defined by the underlying DBMS.
Any program relying on this is erroneous.

4) Case:

a) If T is a temporary viewed table, then a row of T is derived only when the cursor is positioned on
that row by a <fetch statement>.

b) If T is a temporary base table, then T is a te.nporary table that is created when the cursor is
opened. A temporary table persists until the cursor is closed.

5) Case:

a) If neither UNION nor UNIONALL is specified, then T is the result of the specified <query
specification>.

b) If UNION or UNIONALL is specified, then for each UNION or UNIONALL that is specified
let TI and T2 be the result of the <query expression> and the <query term>. The result of the
UNION or UNIONALL is derived as follows:

i) Initialize the result to an empty table.

ii) Insert each row of Tl and each row of T"2 into the result.

iii) If UNION_ALL is not specified, then eliminate any redundant duplicate rows from the
result.

6) Case:

a) If ORDERBY is not specified, then the ordering of rows in T is defined by the underlying
DBMS. This order is subject to the reproducibility requirement within a transaction, but it may
change between transactions. Any program relying on this order is erroneous.

b) If ORDER.BY is specified, then T has a sort order:

i) The sort order is a sequence of sort groups. A sort group is a sequence of rows in which
all values of a sort column are identical. Furthermore, a sort group may be a sequence of

82 DRAFT

a ~ J ~ /, *
A. ,i

sort groups.

ii) The cardinality of the sequence and the ordinal position of each sort group is determined
by the values of the most significant sort column. The cardinality of the sequence is the
minimum number of sort groups such that, for each sort group of more than one row, all
values of that sort column are identical.

iii) If the sort order is based on additional sort columns, then each sort group of more than
one row is a sequence of sort groups. The cardinality of each sequence and the ordinal
position of each sort group within each sequence is determined by the values of the next
most significant sort column. The cardinality of each sequence is the minimum number
of sort groups such that, for each sort group of more than one row, all values of that sort
column are identical. 5

iv) The preceding paragraph applies in turn to each additional sort column. If a sort group
consists of multiple rows and is not a sequence of sort groups, then the order of the rows
within that sort group is assigned by the underlying DBMS. Any program relying on this 1/

order is erroneous.

v) Let C be a sort column and let S denote a sequence which is determined by the values of
C.

vi) A sort direction is associated with each sort column. If the direction of C is ascending,
then the first sort group of S contains the lowest value of C and each successive sort
group contains a value of C that is greater than the value of C in its predecessor sort
group. If the direction is descending, then the first sort group of S contains the highest
value of C and each successive sort group contains a value of C that is less than the value ,
of C in its predecessor sort group.

vii) Ordering is determined by the comparison rules specified in 5.11 "<comparison
predicate>". The order of the null value relative to nonnull values is defined in the
underlying DBMS, but shall be either greater than or less than all nonnull values. Any
program relying on this order is erroneous.

viii) A <sort specification> specifies a sort column and a direction. The sort column is the
column referenced by the <column number> or the <column specification>. The
<column number> n references the nth column of R. A <column specification> references
the named column.

ix) If DESC is specified in a <sort specification>, then the direction of the sort column
specified by that <sort specification> is descending. If ASC is specified or if neither
ASC or DESC is specified, then the direction of the sort column is ascending.

x) The <sort specification> sequence determines the relative significance of the sort
columns. The sort column specified by the first <sort specification> is the most %
significant sort column and each successively specified sort column is less significant I..,
than the previously specified sort column.

I

DRAFT 83

" ! , . :=, _, , . , • ,-.. = ., ,. ,. ,.,' ,.... ,,.. ., . ,....,. ',. :,..,:...=. :. .. . ,.:.:, .

8.4. <delete statement: positioned>

Function

Delete a row of a table based on the current position of a cursor.

Format

<delete statement: positioned>::=
DELETEFROM (<table name>, WHERECURRENTOF => <cursor name>);

Syntax Rules

1) The applicable <privilege>s for each <table name> contained in the <table expression> shall include
DELETE. Note: the "applicable <privileges>" for a <table name> will be defined in "<privilege
definition> "for later levels of Ada/SQL. In Level 1, privileges are as defined to the underlying DBMS.

2) The table designated by the named cursor, CR, shall not be a read-only table.

3) Let T denote the table identified by the <table name>. T shall be the table identified in the first <from

clause> in the <cursor specification> of CR.

General Rules

1) The containing program environment shall contain a <declare cursor> CR whose <cursor name> is the
same as the <cursor name> in the <delete statement: positioned>.

2) Cursor CR shall be open and positioned on a row.

3) The row from which the current row of CR is derived is deleted.

itN

84 DRAFT

* -- d- - -i

8.5. <delete statement: searched>

Function

Delete rows of a table based on a search criterion.

Format

<delete statement: searched>::=
DELETEFROM (<table name> [, WHERE => <search condition>]);

Syntax Rules
1) The applicable <privilege>s for each <table name> contained in the <table expression> shall include

DELETE. Note: the "applicable <privileges>" for a <table name> will be defined in "<privilege
definition> "for later levels of Ada/SQL. In Level , privileges are as defined to the underlying DBMS.

2) Let T denote the table identified by the <table name>. T shall not be a read-only table or a table that is
identified in a <from clause> of any <subquery> contained in the <search condition>.

3) The scope of the <table name> is the entire <delete statement: searched>.

General Rules

1) Case:

a) If a <search condition> is not specified, then all rows of T are deleted. 0

b) If a <search condition> is specified, then it is applied to each row of T with the <table name>
bound to that row, and all rows for which the result of the <search condition> is true are deleted.
Each <subquery> in the <search condition> is effectively executed for each row of T and the
results used in the application of the <search condition> to the given row of T. If any executed
<subquery> contains an outer reference to a column of T, the reference is to the value of that 0
column in the given row of T. Note: "outer reference" is defined in 5.7 "<column iv
specification>". dN

,%

DRAFT 85

7.17 -71 .F r777 M~r- F-7779 "r. -.r

I.

8.6. <fetch statement>

FMuncdon

Position a cursor on the next row of a table and assign values in that row to program variables. -,

Format

<fetch statement>
FETCH (<cursor name>);
INTO (<result specification> [, <cursor name>]);

[INTO (<result specification> [,<cursor name>]);

<result specification> ::=
<result program variable>
[, <last variable>] [,<indicator variable>]

Syntax Rules

I) Let CR be the <declare cursor> whose <cursor name> is the same as the <cursor name> of the <fetch
statement>. Let T be the table defined by the <cursor specification> of CR.

2) A FETCH procedure call shall be followed by as many calls to INTO as are required to retrieve the
values of each column in the row. Each INTO returns one column value.

3) The <result program variable> of the ith INTO statement shall be a program variable to obtain column
values from the ith column of T. The ith <result program variable>s shall be of the same type as that of
the ith column of T being retrieved.

4) The <last variable> shall be a program variable to obtain the value of the last index position used in
retrieving array values (strings). It is used when and only when <result program variable> is of type
array. For one dimensional arrays, which all strings are, <last variable> is of the same type as the array
index

5) The <indicator variable> shall be an optional program variable of type INDICATORVARIABLE, set
to NULLVALUE if the database column retrieved contains a null value, else set to NOTNULL. If a
null value is retrieved from the database but no <indicator variable> is specified, the NULLERROR
exception will be raised.

6) Case:

a) If several tasks within the same program are simultaneously performing database retrievals, the
<cursor name> used in the FETCH must be specified as the final parameter to INTO procedures '-
for that FETCH.

b) If simultaneous database retrievals are not being performed, the <cursor name> parameter may
be omitted from the INTO calls.

General Rules

1) The containing program environment shall contain a <declare cursor> CR whose <cursor name> is the
same as the <cursor name> of the <fetch statement>. This cursor shall be in the open state.

2) If the table designated by cursor CR is empty or if the position of CR is on or after the last row, CR is
positioned after the last row, the exception NOTFOUNDERROR will be raised and values are not
assigned to the program variables identified by the <result specification>.

3) The NOTFOUNDERROR exception will be raised if a FETCH is performed on a cursor for which all
rows (if any) have alhady been returned.

4) If the position of CR is before a row, CR is positioned on that row and values in that row are assigned to
their corresponding program variables.

5) If the position of CR is on r, where r is a row other than the last row, CR is positioned on the row

86 DRAFT
I ,

P'dPtN KPtV M A ~ ~ JF~K' V L)L N'T r ' . WW .' Wil bIM N V ~ W. V',J A0 KiJ W. N Pni Isr -W-Y

immediately after r and values in the row immediately after r are assigned to their corresponding 4
program variables.

6) The order of the assignment of values to program variables is the same as the ordering of the INTO
als.--

7) If an error occurs during the assignment of a value to a program variable, the values returned by the
INTO statements ae undefined. Any program relying on these values is erroneous.

8) The exception CONSTRAINT_ERROR will be raised if the result will not fit in the subtype of the
<result program variable>.

9) If the result is a string whose length is less than the length of the string of the <result program variable>,
<last variable> will be set accordingly and the index positions of <result program variable> beyond
<last variable> will not be altered.

,'%X

1bS

,A' 87 0

,'M,

.,. 0

,4'

DRAFT 87

" ! :- " " ." " ..;:: , . :'.";'_ .;: .,,:. ;; ,, '.',.. .; ,,',. T,,, , .,.;' .;_ ;. .. : ..:,:0 :

8.7. <insert statement>
Function

Create new rows in a table.

Format

<insert statement>::=
INSERT._INTO (<table name> [(<insert column list>)],

I VALUES <= <insert value list> I I <query specification>),

<insert column list>::=
<column name> [& <column name> }

<insert value list>
<insert value> [AND <insert value> }... I

<insert value>::=
<value specification> 0

I NULLVALUE

Syntax Rules

1) The applicable <privilege>s for each <table name> contained in the <table expression> shall include
INSERT. Note: the "applicable <privileges>" for a <table name> will be defined in "<privilege
definition> "for later levels of Ada/SQL. In Level 1, privileges are as defined to the underlying DBMS.

2) Let T denote the table identified by the <table name>. T shall not be a read-only table or a table that is
identified in a <from clause> of the <query specification> or of any <subquery> contained in the <query
specification>.

3) If an <insert column list> is used and the <table name> includes an <authorization identifier>, then the
syntax for the <table name> is <authorization identifier>-<table identifier>. This is one of the three
contexts within Ada/SQL where <table name> syntax is not the usual <authorization identifier>.<table
name>.

4) Each <column name> in the <insert column list> shall identify a column of T and the same column shall
not be identified more than once. Omission of the <insert column list> is an implicit specification of a
<insert column list> that identifies all columns of T in the ascending sequence of their ordinal position
within T.

5) A column identified by the <insert column list> is an object column.

6) Case:

a) If an <insert value list> is specified, then the number of <insert value>s in that <insert value list>
shall be equal to the number of <column name>s in the <insert column list>. Let the ith item of
the <insert statement> refer to the i' h <value specification> in that <insert value list>.

b) If a <query specification> is specified, then the degree of the table specified by that <query
specification> shall be equal to the number of <column name>s in the <insert column list>. Let
the ith item of the <insert statement> refer to the ith column of the table specified by the <query
specification>.

7) If the ith item of the <insert statement> is not the <insert value> NULL_VALUE, then, the data type of
the column of table T designated by the ith <column name> shall be the same as the data type of the ith

item of the <insert statement>.

Level I Implementation Rules

I) NULL VALUE may not be used with UNIFY.

2) With UNIFY, a column which would otherwise be set to a null value is instead set to a default initial

88 DRAFT I

value, based on its type.

3) Constraint checking will not be performed by Level 1.

General Rules

1) A row is inserted in the following steps:

a) A candidate row is effectively created in which the value of each column is the null value. If T
is a base table, B, then the candidate row includes a null value for every column of B. If T is a
viewed table, the candidate row includes a null value for every column of the base table, B from
which T is derived.

b) For each object column in the candidate row, the value is replaced by an insert value.

c) The candidate row is inserted in B.

2) If T is a viewed table defined by a <view definition> that specifies "WITH CHECK OPTION", then if
the <query specification> contained in the <view definition> specified a <where clause> that is not
contained in a <subquery>, then the <search condition> of that <where clause> shall be true for the
candidate row.

3) If an <insert value list> is specified, then case:

a) If the ith <insert value> of the <insert value list> is a <value specification>, then the ith value of
the candidate row is the value of that <value specification>.

b) If the ith <insert value> of the <insert value list> is NULL_VALUE, then the ith value of the 0

candidate row is the null value.

4) If a <query specification> is specified, then let R be the result of the <query specification>. If R is %

empty, then the exception NOTFOUNDERROR is raised and no row is inserted. The number of
candidate rows created is equal to the cardinality of R. The insert values of one candidate row are the
values in one row of R and the values in one row of R are the insert values of one candidate row. '

5) Let V denote a row of R or the sequence of values specified by the <value list>. The nth value of V is , ,-
the insert value of the object column identified by the nth <column name> in the <insert column list>.

6) If an <insert value> is a string which is longer than the <column name> can hold, then <insert value>
will be truncated.

7) If an <insert value> is a string which is shorter than the <column name> can hold, then <insert value> %
will be padded with spaces. S

:N
%

DRAFT 89

0."#

4OM944 LEVEL I ADA/SOL (STRUCTURED QUERY LANGUAGE) DATNMSE 2/2

LAiUG NEFACE U. U) INSTITUTE FOR DEFENSE
ANALYSES ALEXANDRIA A " I 9 RYKCZYNSKI ET AL. SEP 87

ZUNCLASSIFIED IDR-N-360 IDR/HQ-97-32693 ND93-4-C-0l31 F/G 12/5 NLmhhh7hhh

-~~~~~' k-- --. ~ * -

%

L3 2

111111. .. a 4111-1 11112.

lIIIJI2 111 _ I.I4 I6

MICROCOPY RESOLUTION TEST CHARI
?R Al 'W A!Rf)

% 14

s%.

.~%~ .0

8.8. <open statement>

Function

Open a cursor.

Format

<open statement>::=
OPEN (<cursor name>);

Syntax Rules

None.

General Rules

1) A previously executed <declare cursor> shall have associated a <cursor specification> with <cursor
name> CR.

2) Cursor CR shall be in the closed state.

3) Let S denote the <cursor specification> of cursor CR.

4) Cursor CR is opened in the following steps:

a) If S specifies a readonly table, then that table, as specified by the copy of S. is effectively 0
created.

b) Cursor CR is placed in the open state and its position is before the first row of the table.

90 DRAFT

O

8.9. <rollback statement>

Function

Terminate the current transaction with rollback. 0

Format

<rollback statement>::=
ROLLBACK_WORK;

Syntax Rules
•

None.

Level I Implementation Rules

1) <rollback statement>s shall not be used with UNIFY.

General Rules

1) Any changes to the database that were made by the current transaction are canceled.

2) Any cursors that were opened by the current transaction are closed.

3) The current transaction is terminated.

*%

* S I

0 6

"R
A FT

91

8.10. <select statement>

Function

Specify a table and assign the values in the single row of that table to program variables.

Format

<select statement>
[SELEC I SELECTALL I SELECTDISTINCT] (<select list>,

<table expression>) ;
INTO (<result specification>);

[INTO (<result specification>); -.]

Syntax Rules

1) The applicable <privilege>s for each <table name> contained in the <table expression> shall include
SELEC. Note: the "applicable <privileges>" for a <table name> will be defined in "<privilege
definition> "for later levels of Ada/SQL. In Level 1, privileges are as defined to the underlying DBMS.

2) The <table expression> shall not include a <group by clause> or a <having clause> and shall not
identify a grouped view.

3) The number of elements in the <select list> shall be the same as the number of following INTO calls.

4) The data type or the <result program variable> of the <result specification> in the ith INTO call shall be
the same as the data type of the ith <value expression> in the <select list>. 0

5) The <last variable> within <result specification> shall be a program variable to obtain the value of the
last index position used in retrieving aray values (strings). It is used when and only when <result
program variable> within <result specification> is of type array. For one dimensional arrays, which all
strings are, <last variable> within <result specification> is of the same type as the array index.

6) The <indicator variable> within the <result specification> shall be an optional program variable of type S
INDICATOR_VARIABLE, set to NULLVALUE if the database column retrieved contains a
null_value, else set to NOT_NULL. If a null value is retrieved from the database but no <indicator
variable> within <result specification> is specified, the NULL_ERROR exception will be raised.

General Rules

1) A <cursor name> is not defined in the <select statement>. Consequently, tasks within a program must 0
not perform more than one simultaneous <select statement>. If multiple retrievals must be performed
simultaneously, FETCH statements must be used to avoid erroneous results.

2) Let S be a <query specification> whose <select list> and <table expression> are those specified in the
<select statement> and which specifies SELECTALL or SELECT-DISTINCT if it is specified in the
<select statement>. Let R denote the result of <query specification> S.

3) The cardinality of R shall not be greater than one. The UNIQUEERROR exception will be raised if the
<select statement> retrieved more than one row, resulting in the cardinality of R being greater than one.
If R is empty, then the NOTFOUNDERROR exception will be raised.

4) If R is not empty, then values in the row of R are assigned to their corresponding program variables.

5) The order of the assignment of values to program variables is the same as the ordering of the INTO
calls.

6) If an error occurs during the assignment of a value to a program variable, the values returned by the
INTO statements are undefined. Any program relying on these values is erroneous.

7) The <result specification> of the nth INTO calls, corresponds to the n~h value in the row of R.

8) The exception CONSTRAINT_ERROR will be raised if the result will not fit in the subtype of the
<result program variable>.

92 DRAFT

r0

:5'

pP

S

9) If the result is a string whose length is less than the length of the string of the <result program variable>,
<last variable> will be set accordingly and the index positions of <result program variable> beyond .
<last variable> will not be altered. ,

-..

t •

t I

i-i

8.11. <update statement: positioned>

Functien

Modify a row of a table based on a cursor's current position.

Format

<update statement: positioned>::=
UPDATE (<table name>,
SET => <set clause> [I AND <set clause> .
WHERE_CURRENTOF => <cursor name>);

<set clause> ::=
<object column> <= (<value expression> I NULLVALUE I.

<object column> ::=
<column name>

Syntax Rules

1) The applicable <privilege>s for each <table name> contained in the <table expression> shall include
UPDATE. Note: the "applicable <privileges>" for a <table name> will be defined in "<privilege
definition> "for later levels of AdalSQL. In Level 1, privileges are as defined to the underlying DBMS.

2) The table designated by CR shall not be a read-only table.

3) Let T denote the table identified by the <table name>. T shall be the table identified in the first <from
clause> in the <cursor specification> of CR.

4) A <value expression> in a <set clause> shall not include a <set function specification>. .%

5) "he same <object column> shall not appear more than once in an <update statement: positioned>.

6) For each <set clause>, case:

a) If NULL_VALUE is specified, then the column designated by the <object column> shall allow
nulls.

b) The data type of the column designated by the <object column> shall be the same as the data
type of the <value expression> for that column.

Level I Implementation Rules

1) <update statement: positioned> shall not be used with UNIFY.

2) Subtype constraint checking will not be performed by Level 1.

General Rules

1) Cursor CR shall be opened and positioned on a row.

2) The object row is that row from which the current row of CR is derived.

3) The object row is updated as specified by each <set clause>. A <set clause> specifies an object column
and an update value of that column. The object column is the column identified by the <object column>
in the <set clause>. The update value is the null value or the value specified by the <value expression>.
If the <value expression> contains a reference to a column of T, the reference is to the value of that
column in the object row before any value of the object row is updated.

4) The object row is updated in the following steps:

a) A candidate row is created which is a copy of the object row.

b) For each <set clause>, the value of the specified object column in the candidate row is replaced ',

94 DRAFT

- -,j

-

by the specified update value. "%I

c) The object row is replaced by the candidate row.

5) If T is a viewed table defined by a <view definition> that specifies "WITH CHECK OPTION", then if
the <query specification> contained in the <view definition> specifies a <where clause> that is not
contained in a <subquery>, then the <search condition> of that <where clause> shall be true for the
candidate row...

6) The containing program environment shall contain a <declare cursor> CR where <cursor name> is the
same as the <cursor name> in the <update statement: positioned>.

7) If a <set clause> is a string which is longer than the column of the <table name> being updated, then the
<set clause> will be truncated. _

8) If a <set clause> is a string which is shorter than the column of the <table name> being updated, then the
<set clause> will be padded with spaces.

0

S• 9

S S 1

U'.

DRAFT 95

8.12. <update statement: searched>

Function

Modify rows of a table based on a search condition.

Format

<update statement: searched>::=
UPDATE (<table name>,
SET => <set clause> [(AND <set clause> I...],
WHERE => <search condition>);

Syntax Rules

1) The applicable <privilege>s for each <table name> contained in the <table expression> shall include
UPDATE. Note: the "applicable <privileges>" for a <table name> will be defined in "<privilege
definition> "for later levels of Ada/SQL. In Level 1, privileges are as defined to the underlying DBMS.

2) Let T denote the table identified by the <table name>. T shall not be a read-only table or a table that is
identified in a <from clause> of any <subquery> that is contained in the <search condition>.

3) A <value expression> in a <set clause> shall not include a <set function specification>.

4) The same <object column> shall not appear more than once in an <update statement: searched>.

5) The scope of the <table name> is the entire <update statement: searched>. 0

6) For each <set clause>, case:

a) If NULL_VALUE is specified, then the column designated by the <object column> shall allow
nulls.

b) The data type of the column designated by the <object column> shall be the same as the data
type of the <value expression> for that column.

Level I Implementation Rules

1) NULLVALUES shall not be used in a <set clause> with UNIFY.

2) Subtype constraint checking will not be performed by Level 1.

:* General Rules

1) Case:

a) If a <search condition> is not specified, then all rows ofT are the object rows.

b) If a <search condition> is specified, then it is applied to each row of T with the <table name>
bound to that row, and the object rows are those rows for which the result of the <search 9

condition> is true. Each <subquery> in the <search condition> is effectively executed for each
row of T and the results used in the application of the <search condition> to the given row of
T. If any executed <subquery> contains an outer reference to a column of T, the reference is to
the value of that column in the given row of T. Note: "outer reference" is defined in 5.7 6
"<column specification>".

2) Each object row is updated as specified by each <set clause>. A <set clause> specifies an object column
and a update value of that column. The object column is the column identified by the <object column>
in the <set clause>. The update value is the null value or the value specified by the <value expression>.
If the <value expression> contains a reference to a column of T, the reference is to the value of that
column in the object row before any value of the object row is updated.

p3) The object row is updated in the following steps:

a) A candidate row is created which is a copy of the object row.

96 DRAFT

b) For each <set clause>, the value of the specified object column in the candidate row is replaced " N
by the specified update value. 9

c) The object row is replaced by the candidate row. .0

4) If T is a viewed table defined by a <view definition> that specifies "WITH CHECK OPTION", then if
the <query specification> contained in the <view definition> specifies a <where clause> that is not
contained in a <subquery>, then the <search condition> of that <where clause> shall be true for the
candidate row.

5) If a <set clause> is a string which is longer than the column of the <table name> being updated, then the
<set clause> will be truncated.

6) If a <set clause> is a string which is shorter than the column of the <table name> being updated, then the
<set clause> will be padded with spaces.

•%

%

',

DR, 7

eN.'.
S."* *5*

-- I " • " - " '%" "e " " ". %," % . ",".,"% .'u ". "j ' ", " ". "% -, o ". . .. " - . . " " '. -. . 5,

_ F. 1 . " " ' l " k , : . ', ". X . , -: ,.,, -.... , , ., -. , ., ,,., . .,-.-. ¢.,...,,., ,: ,, 5 5 ,%

I.-

98

DRAFT

- - ,?* ~ '.. Ws ~.. ~ -p ~ ~ ~ -~~ ,S ',p ~"p - h'. ~ s' -

r- -- 1VrrV-J -Y -Jr -_W - WI7 W -K

Distribution List for IDA Memorandum Report M-360

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Ms. Sally Barnes 10 copies
HQ Defense Logistics Agency (DLA)
ATTN DLA-ZWS
Cameron Station
Alexandria, VA 22304-6100

Other

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22314

IUIT Research Institute 1 copy
4550 Forbes Blvd., Suite 300
Lanham, MD 20706

Mr. Fred Friedman 1 copy
P.O. Box 576

, Annandale, VA 22003

Ms. Patty Hicks 1 copy
DSAC-SR
3990 Broad St. N
Columbus, OH 43216-5002

Ms. Kerry Hilliard 1 copy
7321 Franklin Road

Annandale, VA 22003

Ms. Elinor Koffee 1 copy I
DSAC-SR
3990 Broad St.
Columbus, OH 43216-5002

CSED Review Panel 1
Dr. Dan Alpert, Director 1 copy •
Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, Illinois 61801

'N

NAME AND ADDRESS NUMBER OF COPIES

Dr. Barry W. Boehm 1 copy
TRW Defense Systems Group
MS 2-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis 1 copy
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel I copy
Software Engineering Institute
Shadyside Place
480 South Aiken Av.
Pittsburgh, PA 15231

Dr. C.E. Hutchinson, Dean I copy
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano I copy
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division 'a

6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto 1 copy
Mainstay
302 Mill St.

Occoquan, VA 22125

Mr. Oliver Selfridge 1 copy
45 Percy Road
Lexington, MA 02173

]DA
'

General W.Y. Smith, HQ 1 copy
Mr. Seymour Deitchman, HQ 1 copy
Mr. Philip Major, HQ 1 copy
Dr. Jack Kramer, CSED I copy
Dr. Robert I. Winner, CSED 1 copy
Dr. John Salasin, CSED 1 copy
Mr. Bill Brykczynski, CSED 10 copies
Ms. Audrey A. Hook, CSED 2 copies
Ms. Katydean Price, CSED 2 copies Of
IDA Control & Distribution Vault 3 copies

'

I

l ,+S

.,....

0_0

_.J

